DOI QR코드

DOI QR Code

Screening and Application of Bacillus Strains Isolated from Nonrhizospheric Rice Soil for the Biocontrol of Rice Blast

  • Sha, Yuexia (Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences) ;
  • Zeng, Qingchao (College of Plant Protection, China Agricultural University) ;
  • Sui, Shuting (College of Plant Protection, China Agricultural University)
  • Received : 2020.02.09
  • Accepted : 2020.04.27
  • Published : 2020.06.01

Abstract

Rice blast, caused by Magnaporthe oryzae, is one of the most destructive rice diseases worldwide. The aim of this study was to screen bacterial isolates to efficiently prevent the occurrence of rice blast. A total of 232 bacterial isolates were extracted from nonrhizospheric rice soil and were screened for antifungal activity against M. oryzae using a leaf segment assay. Strains S170 and S9 showed significant antagonistic activity against M. oryzae in vitro and in leaf disk assays, and controlled M. oryzae infection under greenhouse conditions. The results showed that strains S170 and S9 could effectively control rice leaf blast and panicle neck blast after five spray treatments in field. This suggested that the bacterial strains S170 and S9 were valuable and promising for the biocontrol of rice disease caused by M. oryzae. Based on 16S rDNA, and gyrA and gyrB gene sequence analyses, S170 and S9 were identified as Bacillus amyloliquefaciens and B. pumilus, respectively. The research also demonstrated that B. amyloliquefaciens S170 and B. pumilus S9 could colonize rice plants to prevent pathogenic infection and evidently suppressed plant disease caused by 11 other plant pathogenic fungi. This is the first study to demonstrate that B. amyloliquefaciens and B. pumilus isolated from nonrhizospheric rice soil are capable of recolonizing internal rice stem tissues.

Keywords

References

  1. Abraham, A., Narayanan, S. P., Philip, S., Nair, D. G., Chandrasekharan, A. and Kochupurackal, J. 2013. In silico characterization of a novel $\beta$-1,3-glucanase gene from Bacillus amyloliquefaciens: a bacterial endophyte of Hevea brasiliensis antagonistic to Phytophthora meadii. J. Mol. Model. 19:999-1007. https://doi.org/10.1007/s00894-012-1645-3
  2. Ahmad, Z., Wu, J., Chen, L. and Dong, W. 2017.Isolated Bacillus subtilis strain 330-2 and its antagonistic genes identified by the removing PCR. Sci. Rep. 7:1777. https://doi.org/10.1038/s41598-017-01940-9
  3. Amruta, N., Prasanna Kumar, M. K., Narayanaswamy, S., Gowda, M., Channakeshava, B. C., Vishwanath, K., Puneeth, M. E. and Ranjitha, H. P. 2016. Isolation and identification of rice blast disease-suppressing antagonistic bacterial strains from the rhizosphere of rice. J. Pure Appl. Microbiol. 10:1043-1054.
  4. Arrebola, E., Sivakumar, D. and Korsten, L. 2010. Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus. Biol. Control 53:122-128. https://doi.org/10.1016/j.biocontrol.2009.11.010
  5. Chaiharn, M., Chunhaleuchanon, S. and Lumyong, S. 2009. Screening siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand. World J. Microbiol. Biotechnol. 25:1919-1928. https://doi.org/10.1007/s11274-009-0090-7
  6. Chen, X., Zhang, Y., Fu, X., Li, Y. and Wang, Q. 2016. Isolation and characterization of Bacillus amyloliquefaciens PG12 for the biological control of apple ring rot. Postharvest Biol. Technol. 115:113-121. https://doi.org/10.1016/j.postharvbio.2015.12.021
  7. Chun, J. and Bae, K. S. 2000. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Antonie van Leeuwenhoek 78:123-127. https://doi.org/10.1023/a:1026555830014
  8. Dagdas, Y. F., Yoshino, K., Dagdas, G., Ryder, L. S., Bielska, E., Steinberg, G. and Talbot, N. J. 2012. Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae. Science 336:1590-1595. https://doi.org/10.1126/science.1222934
  9. Food and Agriculture Organization of the United Nations. 2012. The state of food insecurity in the world 2012: economic growth is necessary but not sufficient to accelerate reduction of hunger and malnutrition. Food and Agriculture Organization of the United Nations, Rome, Italy. 62 pp.
  10. He, Y., Zhu, M., Huang, J., Hsiang, T. and Zheng, L. 2019. Biocontrol potential of a Bacillus subtilis strain BJ-1 against the rice blast fungus Magnaporthe oryzae. Can. J. Plant Pathol. 41:47-59. https://doi.org/10.1080/07060661.2018.1564792
  11. Huang, B., Lv, C., Zhuang, P., Zhang, H. and Fan, L. 2011. Endophytic colonisation of Bacillus subtilis in the roots of Robinia pseudoacacia. L. Plant Biol. 13:925-931. https://doi.org/10.1111/j.1438-8677.2011.00456.x
  12. Huang, W., Liu, X., Zhou, X., Wang, X., Liu, X. and Liu, H. 2020. Calcium signaling is suppressed in Magnaporthe oryzae conidia by Bacillus cereus HS24. Phytopathology 110:309-316. https://doi.org/10.1094/phyto-08-18-0311-r
  13. Jambhulkar, P. P., Sharma, P., Manokaran, R., Lakshman, D. K., Rokadia, P. and Jambhulkar, N. 2018. Assessing synergism of combined applications of Trichoderma harzianum and Pseudomonas fluorescens to control blast and bacterial leaf blight of rice. Eur. J. Plant Pathol. 152:747-757. https://doi.org/10.1007/s10658-018-1519-3
  14. Ji, S. H., Gururani, M. A. and Chun, S.-C. 2014. Expression analysis of rice pathogenesis-related proteins involved in stress response and endophytic colonization properties of gfptagged Bacillus subtilis CB-R05. Appl. Biochem. Biotechnol. 174:231-241. https://doi.org/10.1007/s12010-014-1047-3
  15. Kim, J., Rohlf, F. J. and Sokal, R. R. 1993. The accuracy of phylogenetic estimation using the neighbor-joining method. Evolution 47:471-486. https://doi.org/10.2307/2410065
  16. Kim, P. I ., Ryu, J., Kim, Y. H. and Chi, Y.-T. 2010. Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J. Microbiol. Biotechnol. 20:138-145. https://doi.org/10.4014/jmb.0905.05007
  17. Kong, X., Han, B., Li, H., Liang, Y., Shao, K. and Liu, W. 2012. New biodegradable small-diameter artificial vascular prosthesis: a feasibility study. J. Biomed. Mater. Res. A 100:1494-1504.
  18. Kumar, M. K. P., Amruta, N., Manjula, C. P., Puneeth, M. E. and Teli, K. 2017. Characterisation, screening and selection of Bacillus subtilis isolates for its biocontrol efficiency against major rice diseases. Biocontrol Sci. Technol. 27:581-599. https://doi.org/10.1080/09583157.2017.1323323
  19. La Torre, A., Mandala, C., Pezza, L., Caradonia, F. and Battaglia, V. 2014. Evaluation of essential plant oils for the control of Plasmopara viticola. J. Essent. Oil Res. 26:282-291. https://doi.org/10.1080/10412905.2014.889049
  20. Leelasuphakul, W., Sivanunsakul, P. and Phongpaichit, S. 2006. Purification, characterization and synergistic activity of $\beta$-1,3-glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS 89-24 against rice blast and sheath blight. Enzyme Microb. Technol. 38:990-997. https://doi.org/10.1016/j.enzmictec.2005.08.030
  21. Li, R. Y., Wu, X. M., Yin, X. H., Liang, J. N. and Li, M. 2014. The natural product citral can cause significant damage to the hyphal cell walls of Magnaporthe grisea. Molecules 19:10279-10290. https://doi.org/10.3390/molecules190710279
  22. Liu, X., Zhao, H. and Chen, S. 2006. Colonization of maize and rice plants by strain Bacillus megaterium C4. Curr. Microbiol. 52:186-190. https://doi.org/10.1007/s00284-005-0162-3
  23. Li, W., Zhu, Z., Chern, M., Yin, J., Yang, C., Ran, L., Cheng, M., He, M., Wang, K., Wang, J., Zhou, X., Zhu, X., Chen, Z., Wang, J., Zhao, W., Ma, B., Qin, P., Chen, W., Wang, Y., Liu, J., Wang, W., Wu, X., Li, P., Wang, J., Zhu, L., Li, S. and Chen, X. 2017. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell 170:114-126. https://doi.org/10.1016/j.cell.2017.06.008
  24. Liu, Y., Lai, Q., Dong, C., Sun, F., Wang, L., Li, G. and Shao, Z. 2013. Phylogenetic diversity of the Bacillus pumilus group and the marine ecotype revealed by multilocus sequence analysis. PLoS ONE 8:e80097. https://doi.org/10.1371/journal.pone.0080097
  25. Muthayya, S., Sugimoto, J. D., Montgomery, S. and Maberly, G. F. 2014. An overview of global rice production, supply, trade, and consumption. Ann. N. Y. Acad. Sci. 1324:7-14. https://doi.org/10.1111/nyas.12540
  26. Nagpure, A., Choudhary, B. and Gupta, R. K. 2014. Chitinases: in agriculture and human healthcare. Crit. Rev. Biotechnol. 34:215-232. https://doi.org/10.3109/07388551.2013.790874
  27. Qi, Z., Yu, J., Shen L., Yu, Z., Yu, M., Du, Y, Zhang, R., Song, T., Yin, X., Zhou,Y., Li, H., Wei, Q. and Liu, Y. 2017. Enhanced resistance to rice blast and sheath blight in rice (Oryza sativa L.) by expressing the oxalate decarboxylase protein Bacisubin from Bacillus subtilis. Plant Sci. 265:51-60. https://doi.org/10.1016/j.plantsci.2017.09.014
  28. Rais, A., Shakeel, M., Hafeez, F. Y. and Hassan, M. N. 2016. Plant growth promoting rhizobacteria suppress blast disease caused by Pyricularia oryzae and increase grain yield of rice. BioControl 61:769-780. https://doi.org/10.1007/s10526-016-9763-y
  29. Rais, A., Shakeel, M., Malik, K., Hafeez, F. Y., Yasmin, H., Mumtaz, S. and Hassan, M. N. 2018. Antagonistic Bacillus spp. reduce blast incidence on rice and increase grain yield under field conditions. Microbiol. Res. 208:54-62. https://doi.org/10.1016/j.micres.2018.01.009
  30. Schwyn, B. and Neilands, J. B. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160:47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  31. Shaldon, S. 1956. Estimation of serum-amylase: a simplified method. Lancet 268:547. https://doi.org/10.1016/S0140-6736(56)92027-X
  32. Sha, Y., Wang, Q. and Li, Y. 2016a. Screening and prevention of Bacillus biocontrol against rice blast. Chin. J. Biol. Control 32:474-484 (in Chinese).
  33. Sha, Y., Wang, Q. and Li, Y. 2016b. Suppression of Magnaporthe oryzae and interaction between Bacillus subtilis and rice plants in the control of rice blast. SpringerPlus 5:1238. https://doi.org/10.1186/s40064-016-2858-1
  34. Sha, Y., Zeng, Q., Wang, X., Shen, R., Liu, H. and Wang, X. 2018. Screening and control efficiency evaluation of Bacillus against rice blast Magnaporthe oryzae. Chin. J. Biol. Control 34:414-422 (in Chinese).
  35. Shakeel, M., Rais, A., Hassan, M. N. and Hafeez, F. Y. 2015. Root associated Bacillus sp. improves growth, yield and zinc translocation for basmati rice (Oryza sativa) varieties. Front. Microbiol. 6:1286.
  36. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876-4882. https://doi.org/10.1093/nar/25.24.4876
  37. Wiraswati, S. M., Rusmana, I., Nawangsih, A. A. and Wahyudi, A. T. 2019. Antifungal activities of bacteria producing bioactive compounds isolated from rice phyllosphere against Pyricularia oryzae. J. Plant Protect. Res. 59:86-94.
  38. Wu, L., Xiao, W., Chen, G., Song, D., Khaskheli, M. A., Li, P., Zhang, S. and Feng, G. 2018. Identification of Pseudomonas mosselii BS011 gene clusters required for suppression of Rice Blast Fungus Magnaporthe oryzae. J. Biotechnol. 282:1-9. https://doi.org/10.1016/j.jbiotec.2018.04.016
  39. Zhang, C., Zhang, X. and Shen, S. 2014. Proteome analysis for antifungal effects of Bacillus subtilis KB-1122 on Magnaporthe grisea P131. World J. Microbiol. Biotechnol. 30:1763-1774. https://doi.org/10.1007/s11274-014-1596-1
  40. Zhang, L. and Sun, C. 2018. Fengycins, cyclic lipopeptides from marine Bacillus subtilis strains, kill the plant-pathogenic fungus Magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation. Appl. Environ. Microbiol. 84:e00445-18.