DOI QR코드

DOI QR Code

A Consideration on the Electromagnetic Properties of Road Pavement Using Ground Penetrating Radar (GPR)

지표투과레이더(GPR)에 의한 도로포장의 전자기적 특성값 고찰

  • Rhee, Jiyoung (Korea Expressway Corporation Research Institute) ;
  • Shim, Jaewon (Korea Expressway Corporation Research Institute) ;
  • Lee, Sangrae (Korea Expressway Corporation Research Institute) ;
  • Lee, Kang-Hyun (Korea Expressway Corporation Research Institute)
  • 이지영 (한국도로공사 도로교통연구원) ;
  • 심재원 (한국도로공사 도로교통연구원) ;
  • 이상래 (한국도로공사 도로교통연구원) ;
  • 이강현 (한국도로공사 도로교통연구원)
  • Received : 2019.11.12
  • Accepted : 2019.11.24
  • Published : 2020.06.01

Abstract

This study investigated the use of Ground Penetrating Radar (GPR) over a two-decade period on public roads, focusing on the electromagnetic characteristics of the pavement dielectrics and attenuation. From the results, a typical range of characteristic value, influencing factors, and a correction method were suggested. The typical dielectrics of asphalt pavements were 4-7, as measured by an air-coupled 1 GHz GPR antenna. The dielectrics of concrete pavements were very large in the early age, but were drastically reduced with ageing. Ten years on, collection was in the range of 6-12. The dielectrics were proportional to the relative humidity (R.H.) of the atmosphere. The effects were reduced to one eighth with an overlay. Attenuation generally increased with thickness of the road layer, and also increased where there was damage. The GPR results could also vary depending on the weather conditions as well as on the characteristics of the GPR equipment, even at the same frequency. Therefore, GPR surveys should be performed on road surfaces without debris on a single, fine day. The reliability of the GPR analysis could be improved by cores and equipment calibration with other non-destructive test surveys.

본 연구는 실제 공용 중인 도로에서 약 20년에 걸쳐 지표투과레이더(GPR) 조사하고 도로포장의 전자기적 특성값인 유전상수와 감쇠에 대해 분석하였다. 그 결과로부터 도로포장의 일반적인 특성값 범위, 영향인자, 그리고 보정방법을 제시하였다. 비접촉식(Air-coupled) 1 GHz GPR 안테나로 조사한 아스팔트 포장의 일반적인 유전상수 범위는 4~7이었다. 콘크리트 포장의 경우 초기 재령에서는 유전상수가 매우 큰 값을 보였으나 재령이 경과할수록 급격하게 작아졌다. 재령 10년 이후에는 6~12 범위에 수렴하였다. 공기 중에 노출된 포장의 유전상수는 대기의 상대습도에 따라 증감하였으나 덧씌우기 포장층이 있는 경우 영향성은 1/8 수준으로 감소하였다. 레이더 파의 감쇠는 일반적으로 포장층의 두께가 증가할수록 커지게 되며, 손상 구간에서도 증가하였다. GPR 조사 시 기상조건에 따라서 포장의 전자기적 특성값이 달라질 수 있음을 확인하였으며, 특히 포장상태가 양호한 경우보다 손상이 발달한 상태에서 영향성이 크게 나타났다. 이밖에 동일한 주파수의 GPR 안테나로 조사한 경우에도 장비의 특성이 달라지면 결과값에 차이가 발생할 수 있었다. 따라서 GPR 조사는 도로에 대한 이해를 바탕으로 날씨의 변화가 거의 없고 도로표면이 깨끗한 상태에서 숙련자에 의해 실시하는 것이 필요하다. 또한 보정코어, 장비 보정 등을 통해 해석결과의 신뢰도를 향상하는 것이 요구된다.

Keywords

References

  1. ASTM D 6432. (2011). Standard guide for using the surface ground penetrating radar method for subsurface investigation, American Society for Testing and Materials (ASTM), ASTM International.
  2. Baek, J. E. and Choi, J. S. (2014). "Investigation of substructure under the roads using ground penetrating radar (GPR)." Road Engineers, Vol. 16, No. 2, pp. 11-16 (in Korean).
  3. Balanis, C. A. (1989). Advanced engineering electromagnetics, John Wiley & Sons, NY, USA.
  4. Daniels, D. J. (2004). Ground penetrating radar: IET radar, sonar, navigation and avionics series 15, The Institution of Engineering and Technology, London, UK.
  5. Geophysical Survey Systems, Inc. (GSSI). (2009). RADAN version 6.6. GSSI.
  6. Geophysical Survey Systems, Inc. (GSSI). (2017). RADAN version 7. GSSI.
  7. Gucunski, N., Pailes, B., Kim, J. Y., Azari, H. and Dinh, K. (2016). "Capture and quantification of deterioration progression in concrete bridge decks through periodical NDE surveys." Journal of Infrastructure Systems, ASCE, Vol. 23, No. 1, pp. 1-11, DOI: 10.1061/(ASCE)IS.1943-555X.0000321.
  8. Kim, J. Y. and Choi, C. H. (2018). "A Study on risk evaluation method of ground subsidence around sewer." Journal of the Korean Geo-Environmental Society. Vol. 19, No. 7, pp. 13-18, DOI: https://doi.org/10.14481/jkges.2018.19.7.13 (in Korean).
  9. Korea Meteorological Administration (KMA) (2019). The detailed meteorological measurement data by the Automatic Weather System (AWS), Available at: http://www.kma.go.kr. (Accessed: November 1, 2019).
  10. Korea Ministry of Government Legislation (KMGL) (2019). Special act on underground safety management, Available at: http://www.law.go.kr/. (Assessed: November 1, 2019)
  11. Korea Society of Earth and Exploration Geophysicists (KSEG). (2002). Geophysical exploration guidelines for application in the civil engineering environment field, Korea Society of Earth and Exploration Geophysicists (KSEG) (in Korean).
  12. Lee, C. M., Yoon, J. S., Baek, J. E. and Kim, S. T. (2019). "Evaluation of GPR application to survey utilities on sidewalks." International Journal Highway Engineering, Vol. 21, No. 1, pp. 35-41, DOI: https://doi.org/10.7855/IJHE.2019.21.1.035 (in Korean).
  13. Lee, D. Y. (2018). "Analysis of sewer pipe defect and ground subsidence risk by using CCTV and GPR monitering results." Journal Korean Geosynthetics Society, Vol. 17, No. 3, pp. 47-55, DOI: https://doi.org/10.12814/jkgss.2018.17.3.047 (in Korean).
  14. Maser, K. R. and Scullion, T. (1991). Automated detection of pavement layer thicknesses and subsurface moisture using ground penetrating radar, TRB Paper, Washington, D.C., USA.
  15. Olhoeft, G. R. (1984). "Applications and limitations of ground penetrating radar. Expanded Abstracts." 54th Annual International Meeting and Exposition of the Society of Exploration Geophysicists, Atlanta, GA, pp. 147-148.
  16. Pajewski, L., Benedetto, A., Loizos, A., Slob, E. C. and Tosti, F. (2015). "COST Action TU1208 "Civil engineering applications of ground penetrating radar" ongoing research activities and midterm results." EGU General Assembly 2015, Geophysical Research Abstracts, 17, EGU2015, 13969, Vienna.
  17. Rhee, J. Y., Choi, J. J. and Kee, S. H. (2019). "Evaluation of the depth of deteriorations in concrete bridge decks with asphalt overlays using air-coupled GPR: A case study from a pilot bridge on korean expressway." International Journal of Concrete Structures and Materials, Vol. 13, No. 3, pp. 399-415, DOI: https://doi.org/10.1186/s40069-018-0327-7.
  18. Saarenketo, T. (2006). Electrical properties of road materials and subgrade soils and the use of ground penetrating radar in traffic infrastructure surveys, Doctoral dissertation, Department of Geosciences at University of Oulu: Oulu, Finland.
  19. Smith, D. G. and Jol, H. M. (1995). "Ground penetrating radar: antenna frequencies and maximum probable depths of penetration in Quaternary sediments." Journal of Applied Geophysics, Vol. 33, No. 1-3, pp. 93-100. DOI: https://doi.org/10.1016/0926-9851(95)90032-2.
  20. Yoon, J. S., Lee, C. M. and Baek, J. E. (2016). "Comparison of multichannel ground penetrating radar equipment for detecting road cavities." International Journal Highway Engineering, Vol. 20, No. 6, pp. 101-108, DOI: https://doi.org/10.7855/IJHE.2018.20.6.101 (in Korean).