References
- Alam, M.M., Zhou, Y., Zhao, J.M., Flamand O. and Boujard, O. (2010), "Classification of the tripped cylinder wake and bi-stable phenomenon", Int. J. Heat Fluid Flow, 31(4), 545-560. https://doi.org/10.1016/j.ijheatfluidflow.2010.02.018.
- Bai, H.L. and Alam, M.M. (2018), "Dependence of square cylinder wake on Reynolds Number", Phys. Fluids, 30, 015102, 1-19. https://doi.org/10.1063/1.4996945.
- Bhatt, R. and Alam, M.M. (2018), "Vibration of a square cylinder submerged in a wake", J. Fluid Mech., 853, 301-332. https://doi.org/10.1017/jfm.2018.573.
- Bourgeois, J.A., Noack, B.R. and Martinuzzi, R.J. (2013), "Generalized phase average with applications to sensor-based flow estimation of the wall-mounted square cylinder wake", J. Fluid Mech., 736, 316-350. https://doi.org/10.1017/jfm.2013.494.
- Bourgeois, J.A., Sattari, P. and Martinuzzi, R.J. (2011), "Alternating half-loop shedding in the turbulent wake of a finite surface-mounted square cylinder with a thin boundary layer", Phys. Fluids, 23(9), 95101. https://doi.org/10.1063/1.3623463.
- Bourgeois, J.A., Sattari, P. and Martinuzzi, R.J. (2012), "Coherent vortical and straining structures in the finite wall-mounted square cylinder", Int. J. Heat Fluid Flow, 35, 130-140. https://doi.org/10.1016/j.ijheatfluidflow.2012.01.009.
- Cao, Y., Tamura, T. and Kawai, H. (2019), "Investigation of wall pressures and surface flow patterns on a wall-mounted square cylinder using very high-resolution Cartesian mesh", J. Wind Eng. Ind. Aerod., 188, 1-18. https://doi.org/10.1016/j.jweia.2019.02.013.
- Carassale, L., Freda, A. and Michela, M.B. (2014), "Experimental investigation on the aerodynamic behavior of square cylinders with rounded corners", J. Fluids Struct., 44, 195-204. https://doi.org/10.1016/j.jfluidstructs.2013.10.010.
- Chen, H.L., Dai, S.S., Jia, L. and Yao, X.L. (2009), "Three-dimensional numerical simulation of the flow past a circular cylinder based on LES method", J. Marine Sci. Appli., 8(2), 110-116. https://doi.org/10.1007/s11804-009-8110-4.
- Choi, H.C., Jeon, W.P. and Kim, J.S. (2008), "Control of flow over a bluff body", Annu. Rev. Fluid Mech., 40, 113-139. https://doi.org/10.1146/annurev.fluid.39.050905.110149.
- Derakhshandeh, J.F. and Alam, M.M. (2019), "A review of bluff body wakes", Ocean Eng., 182, 475-488. https://doi.org/10.1016/j.oceaneng.2019.04.093
- Dutton, R. (1990), "Reduction of tall building motion by aerodynamic treatments", J. Wind Eng. Ind. Aerod., 36(Part 2), 739-744. https://doi.org/10.1016/0167-6105(90)90071-J.
- Gu, M. and Quan, Y. (2004), "Across-wind loads of typical tall buildings", J. Wind Eng. Ind. Aerod., 92, 1147-1165. https://doi.org/10.1016/j.jweia.2004.06.004.
- Kawai, H. (1998), "Effect of corner modifications on aeroelastic instabilities of tall buildings", J. Wind Eng. Ind. Aerod., 74-76(1), 719-729. https://doi.org/10.1016/S0167-6105(98)00065-8.
- Kawai, H., Okuda, Y. and Ohashi, M. (2012), "Near wake structure behind a 3D square prism with the aspect ratio of 2.7 in a shallow boundary layer flow", J. Wind Eng. Ind. Aerod., 104-106, 196-202. https://doi.org/10.1016/j.jweia.2012.04.019.
- Kim, Y.C., Bandi, E.K., Yoshida, A. and Tamura, Y. (2015), "Response characteristics of super-tall buildings - Effects of number of sides and helical angle", J. Wind Eng. Ind. Aerod., 145, 252-262. https://doi.org/10.1016/j.jweia.2015.07.001.
- Kindree, M.G., Shahroodi, M. and Martinuzzi, R.J. (2018) "Low-frequency dynamics in the turbulent wake of cantilevered square and circular cylinders protruding a thin laminar boundary layer", Experim. Fluids, 59, 186. https://doi.org/10.1007/s00348-018-2641-x.
- Kotapati, R.B., Mittal, R. and Cattafesta Iii, L.N. (2007), "Numerical study of a transitional synthetic jet in quiescent external flow", J. Fluid Mech., 581, 287-231. https://doi.org/10.1017/S0022112007005642
- Krajnovic, S. (2011), "Flow around a tall finite cylinder explored by large eddy simulation", J. Fluid Mech., 676(10), 294-317. https://doi.org/10.1017/S0022112011000450.
- Krajnovic, S. and Davidson L. (2002), "Large-Eddy Simulation of the flow around a bluff body", AIAA J., 40(5), 927-936. https://doi.org/10.2514/2.1729.
- Lee, B.E. (1975), "The effect of turbulence on the surface pressure field of a square prism", J. Fluid Mech., 69(2), 263-282. https://doi.org/10.1017/S0022112075001437.
- Li, Y., Xiang, T., Kong, F.T., Qiu, S. L. and Yong, G.L. (2018), "Aerodynamic treatments for reduction of wind loads on high-rise buildings", J. Wind Eng. Ind. Aerod., 172, 107-115. https://doi.org/10.1016/j.jweia.2017.11.006.
- Li, Z.J., Navon, I.M., Hussaini, M.Y. and Le Dimet, F.X. (2003), "Optimal control of cylinder wakes via suction and blowing", Comput. Fluids, 32(2), 149-171. https://doi.org/10.1016/S0045-7930(02)00007-5.
- Lilly, D.K. (1992), "A proposed modification of the Germano subgrid-scale closure method", Phys. Fluids, 4(3), 633-635. https://doi.org/10.1063/1.858280.
- McClean, J.F. and Sumner, D. (2014), "An experimental investigation of aspect ratio and incidence angle effects for the flow around surface-mounted finite-height square prisms", J. Fluids Eng., 136(8), 081206. https://doi.org/10.1115/1.4027138.
- Menicovich, D., Lander, D., Vollen, J., Amitay, M., letchford, C. and Dyson, A. (2014), "Improving aerodynamic performance of tall buildings using Fluid based Aerodynamic Modification", J. Wind Eng. Ind. Aerod., 133, 263-273. https://doi.org/10.1016/j.jweia.2014.08.011.
- Mooneghi, M.A. and Kargarmoakhar, R. (2016) "Aerodynamic mitigation and shape optimization of buildings: Review", J. Build. Eng., 6, 225-235. https://doi.org/10.1016/j.jobe.2016.01.009.
- Noda, H. and Nakayama, A. (2003), "Free-stream turbulence effects on the instantaneous pressure and forces on cylinders of rectangular cross section", Experim. Fluids, 34, 332-344. https://doi.org/10.1007/s00348-002-0562-0.
- Okamoto, S. and Sunabashiri, Y. (1992), "Vortex shedding from a circular cylinder of finite length placed on a ground plane", J. Fluids Eng., 114(4), 512-521. https://doi.org/10.1115/1.2910062.
- Park, C.W. and Lee, S.J. (2000), "Free end effects on the near wake flow structure behind a finite circular cylinder", J. Wind Eng. Ind. Aerod., 88, 231-246. https://doi.org/10.1016/S0167-6105(00)00051-9.
- Park, C.W. and Lee, S.J. (2004), "Effects of free-end corner shape on flow structure around a finite cylinder". J. Fluids Struct., 19(2), 141-158. https://doi.org/10.1016/j.jfluidstructs.2003.12.001.
- Pattenden, R.J., Turnock, S.R. and Zhang, X. (2005), "Measurements of the flow over a low-aspect-ratio cylinder mounted on a ground plane", Experim. Fluids, 39, 10-21. https://doi.org/10.1007/s00348-005-0949-9.
- Peng, S., Wang, H.F., Zeng, L.W. and He, X.H. (2019), "Low-frequency dynamics of the flow around a finite-length square cylinder", Experim. Therm. Fluid Sci., 109, 109877. https://doi.org/10.1016/j.expthermflusci.2019.109877.
- Porteous, R., Moreau, D.J. and Doolan, C.J. (2014), "A review of flow induced noise from finite wall-mounted cylinders", J. Fluids Struct., 51, 240-254. https://doi.org/10.1016/j.jfluidstructs.2014.08.012.
- Porteous, R., Moreau, D.J. and Doolan, C.J. (2017), "The aeroacoustics of finite wall-mounted square cylinders", J. Fluid Mech., 832(10), 287-328. https://doi.org/10.1017/jfm.2017.682.
- Quan, Y. and Gu, M. (2012), "Across-wind equivalent static wind loads and responses of super-high-rise buildings", Advan. Struct. Eng., 15(12), 2145-2155. https://doi.org/10.1260%2F1369-4332.15.12.2145 https://doi.org/10.1260/1369-4332.15.12.2145
- Rastan, M.R., Sohankar, A. and Alam, M.M. (2017), "Low-Reynolds-number flow around a wall-mounted square cylinder: Flow structures and onset of vortex shedding", Phys. Fluids, 29, 103601. https://doi.org/10.1063/1.4989745.
- Rastan, M.R., Sohankar, A., Doolan, C., Moreau, D., Shirani, E. and Alam, M.M. (2019), "Controlled flow over a finite square cylinder using suction and blowing", Int. J. Mech. Sci., 156, 410-434. https://doi.org/10.1016/j.ijmecsci.2019.04.013.
- Saeedi, M., Lepoudre, P.P. and Wang, B.C. (2014), "Direct numerical simulation of turbulent wake behind a surface-mounted square cylinder", J. Fluids Struct., 51, 20-39. https://doi.org/10.1016/j.jfluidstructs.2014.06.021.
- Saha, A.K. (2013), "Unsteady flow past a finite square cylinder mounted on a wall at low Reynolds number", Comput. Fluids, 88(15), 599-615. https://doi.org/10.1016/j.compfluid.2013.10.010.
- Sakamoto, H. (1985), "Aerodynamic forces acting on a rectangular prism placed vertically in a turbulent boundary layer", J. Wind Eng. Ind. Aerod., 18(2), 131-151. https://doi.org/10.1016/0167-6105(85)90093-5.
- Sakamoto, H. and Mikio, A. (1983), "Vortex shedding from a rectangular prism and a circular cylinder placed vertically in a turbulent boundary layer", J. Fluid Mech., 126, 147-165. https://doi.org/10.1017/S0022112083000087.
- Sakamoto, H. and Oiwake, S. (1984), "Fluctuating forces on a rectangular prism and a circular cylinder placed vertically in a turbulent boundary layer", J. Wind Eng. Ind. Aerody., 106(2), 160-166. https://doi.org/10.1115/1.3243093.
- Sattari, P., Bourgeois, J.A. and Martinuzzi, R.J. (2012), "On the vortex dynamics in the wake of a finite surface-mounted square cylinder", Experim. Fluids, 52(5), 1149-1167. https://doi.org/10.1007/s00348-011-1244-6.
- Shang, J., Zhou, Q., Alam, M.M., Liao, H. and Cao, S. (2019), "Numerical study of the flow structure and aerodynamic forces on two tandem square cylinders with different chamfered-corner ratio", Phys Fluids, 31, 075102, 1-15. https://doi.org/10.1063/1.5100266.
- Smagorinsky, J. (1963), "General circulation experiments with the primitive equations", Mon. Weather Rev., 91(3), 99-164. https://doi.org/10.1175/1520-0493(1963)091%3C0099:GCEWTP%3E2.3.CO;2.
- Sohankar, A., Abbasi, M. Nili-Ahmadabai, M., Alam, M.M. and Zafar, F. (2018a), "Experimental study of the flow around two finite square cylinders", Arch. Mech., 70, 457- 480.
- Sohankar, A., Esfeh, M., Pourjafan, H., Alam, M.M. and Wang, L. (2018b), "Features of the flow over a finite length square prism on a wall at various incidence angles", Wind Struct., 26(5), 317-329. https://doi.org/10.12989/was.2018.26.5.317.
- Sumner, A. and Ogunremi, A. (2015), "On the effects of incidence angle on the mean wake of a surface-mounted finite-height square prism", In Proceedings of the ASME-JSME-KSME., July.
- Sumner, D., Heseltine, J.L., Dansereau, O. and Dansereau, J.P. (2004), "Wake structure of a finite circular cylinder of small aspect ratio", Experim. Fluids, 37(5), 720-730. https://doi.org/10.1007/s00348-004-0862-7.
- Sumner, D., Rostamy, N., Bergstrom, D.J. and Bugg, J.D. (2017), "Influence of aspect ratio on the mean flow field of a surface-mounted finite-height square prism", Int. J. Heat Fluid Flow, 65, 1-20. https://doi.org/10.1016/j.ijheatfluidflow.2017.02.004.
- Tanaka, H., Tamura, Y., Ohtake, K., Nakai, M. and Kim, Y.C. (2012), "Experimental investigation of aerodynamic forces and wind pressures acting on tall buildings with various unconventional configurations", J. Wind Eng. Ind. Aerod., 107-108, 179-191. https://doi.org/10.1016/j.jweia.2012.04.014.
- Tanaka, S. and Murata, S. (1999), "An investigation of the wake structure and aerodynamic characteristics of a finite Circular Cylinder", JSME Int. J. Series B: Fluids Therm. Eng., 42(2), 178-187. https://doi.org/10.1299/jsmeb.42.178.
- Tutar, M., Hold, A.E. and Lewis, A.P. (1998), "Comparative performance of various two equation models and LES on simulated flow past a circular cylinder in subcritical flow regime", The Proceedings of ASME Fluids Engineering Summer Meeting on Finite Element Application in Fluid Dynamics, Washington, D.C., USA.
- Uffinger, T., Ali, I. and Becker, S. (2013). "Experimental and numerical investigations of the flow around three different wall-mounted cylinder geometries of finite length", J. Wind Eng. Ind. Aerod., 119, 13-27. https://doi.org/10.1016/j.jweia.2013.05.006.
- Unnikrishnan, S. and Ogunremi, A. (2017), "The effect of incidence angle on the mean wake of surface-mounted finite-height square prisms", Int. J. Heat Fluid Flow, 66, 137-156. https://doi.org/10.1016/j.ijheatfluidflow.2017.05.012.
- Wang, H.F. and Zhou, Y. (2009), "The finite length square cylinder near wake", J. Fluid Mech., 638(10), 453-490. https://doi.org/10.1017/S0022112009990693.
- Wang, H.F., Peng, S., Li, Y. and He X.H. (2018), "Control of the aerodynamic forces of a finite-length square cylinder with steady slot suction at its free end", J. Wind Eng. Ind. Aerod., 179, 438-448. https://doi.org/10.1016/j.jweia.2018.06.016.
- Wang, H.F., Peng, S., Zhou, Y. and He, X.H. (2016), "Transition along a finite-length cylinder in the presence of a thin boundary layer", Experim. Fluids, 57(5), 1-10. https://doi.org/10.1007/s00348-016-2160-6.
- Wang, H.F., Zhao, X.Y., He, X.H. and Zhou, Y. (2017), "Effects of oncoming flow conditions on the aerodynamic forces on a cantilevered square cylinder", J. Fluid Struct., 75, 140-157. https://doi.org/10.1016/j.jfluidstructs.2017.09.004.
- Wang, H.F., Zhou, Y., Chan, C.K. and Lam, K.S. (2006), "Effect of initial conditions on interaction between a boundary layer and a wall-mounted finite-length-cylinder wake", Phys. Fluids, 18(6), 065106. https://doi.org/10.1063/1.2212329.
- Xie, J.M. (2014), "Aerodynamic optimization of super-tall buildings and its effectiveness assessment", J. Wind Eng. Ind. Aerod., 130, 88-98. https://doi.org/10.1016/j.jweia.2014.04.004.
- Zafar, F. and Alam, M.M. (2019), "Flow structure and heat transfer from cylinders modified from square to circular", Phys. Fluids, 31(8), 083604. https://doi.org/10.1063/1.5109693.
- Zhang, D., Cheng, L., An, H.W. and Zhao, M. (2017), "Direct numerical simulation of flow around a surface-mounted finite square cylinder at low Reynolds numbers", Phys. Fluids, 29(4), 045101. https://doi.org/10.1063/1.4979479.
- Zhang, H., Xin, D. and Ou, J. (2016), "Steady suction for controlling across-wind loading of high-rise buildings", Struct. Design Tall Spec. Build., 25(15), 785-800. https://doi.org/10.1002/tal.1283.
- Zheng, C.R. and Zhang, Y.C. (2012), "Computational fluid dynamics study on performance and mechanism of suction control over a high-rise building", Struct. Design Tall Spec. Build., 21(7), 475-491. https://doi.org/10.1002/tal.622.
- Zheng, Q. and Alam, M.M. (2017), "Intrinsic features of flow past three square prisms in side-by-side arrangement", J. Fluid Mech., 826, 996-1033. https://doi.org/10.1017/jfm.2017.378.