과제정보
This research was funded in part by the Natural Science Foundation of China (NSFC, No. 51708462, 51878580) and the Fundamental Research Funds for Key Laboratory of Wind-Resistant Technology for Bridge Structures (NO. KLWRTBMC18-04).
참고문헌
- Alonso, G., Valero, E. and Meseguer, J. (2009), "An analysis on the dependence on cross section geometry of galloping stability of two-dimensional bodies having either biconvex or rhomboidal cross sections", European J. Mech.-B/Fluids., 28(2), 328-334. https://doi.org/10.1016/j.euromechflu.2008.09.004.
- Andrianne, T. and Dimitriadis, G. (2014), "Empirical modelling of the bifurcation behaviour of a bridge deck undergoing acrosswind galloping", J. Wind Eng. Ind. Aerod., 135, 129-135. https://doi.org/10.1016/j.jweia.2014.10.007.
- Bearman, P. and Luo, S. (1988), "Investigation of the aerodynamic instability of a square-section cylinder by forced oscillation", J. Fluid. Struct., 2(2), 161-176. https://doi.org/10.1016/S0889-9746(88)80017-3.
- Brownjohn, J.M.W. (1997), "Vibration characteristics of a suspension footbridge", J. Sound Vib., 202(1), 29-46. https://doi.org/10.1006/jsvi.1996.0789.
- Buljac, A., Kozmar, H., Pospisil, S. and Machacek, M. (2017), "Flutter and galloping of cable-supported bridges with porous wind barriers", J. Wind Eng. Ind. Aerod., 171, 304-318. https://doi.org/10.1016/j.jweia.2017.10.012.
- Cao, S. and Cao, J. (2017), "Toward better understanding of turbulence effects on bridge aerodynamics", Front. Built Environ., 3 72. https://doi.org/10.3389/fbuil.2017.00072
- Chen, Z.Q., Liu, M.G., Hua, X.G. and Mou, T.M. (2012), "Flutter, galloping, and vortex-induced vibrations of H-section hangers", J. Bridge Eng., 17(3), 500-508. https://doi.org/10.1016/j.jweia.2017.10.012.
- Cheng, S., Larose, G.L., Savage, M.G., Tanaka, H. and Irwin, P.A. (2008), "Experimental study on the wind-induced vibration of a dry inclined cable-Part I: Phenomena", J. Wind Eng. Ind. Aerod., 96(12), 2231-2253. https://doi.org/10.1016/j.jweia.2008.01.008.
- Choi, C.K. and Kwon, D.K. (1998), "Wind tunnel blockage effects on aerodynamic behavior of bluff body", Wind Struct. Int. J., 1(4), 351-364. https://doi.org/10.12989/was.1998.1.4.351
- Dallard, P., Fitzpatrick, T., Flint, A., Low, A., Smith, R.R., Willford, M. and Roche, M. (2001), "London Millennium Bridge: pedestrian-induced lateral vibration", J. Bridge Eng., 6(6), 412-417. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:6(412).
- Den Hartog, J. (1932), "Transmission line vibration due to sleet", Transactions Amer. Institute Electrical Eng., 51(4), 1074-1076. https://doi.org/10.1109/T-AIEE.1932.5056223.
- Faridani, H.M. and Barghian, M. (2012), "Improvement of dynamic performances of suspension footbridges by modifying the hanger systems", Eng. Struct., 34, 52-68. https://doi.org/10.1016/j.engstruct.2011.09.025.
- Fujino, Y., Pacheco, B.M., Nakamura, S.I. and Warnitchai, P. (1993), "Synchronization of human walking observed during lateral vibration of a congested pedestrian bridge", Earthquake Engineering & Structural Dynamics. 22(9), 741-758. https://doi.org/10.1002/eqe.4290220902
- Gandia, F., Meseguer, J. and Sanz-Andres, A. (2014), "Static and dynamic experimental analysis of the galloping stability of porous H-section beams", Sci. World J., 2014, 746826. https://doi.org/10.1155/2014/746826.
- Gao, G. and Zhu, L. (2016), "Measurement and verification of unsteady galloping force on a rectangular 2: 1 cylinder", J. Wind Eng. Ind. Aerod., 157, 76-94. https://doi.org/10.1016/j.jweiar.2016.08.004.
- Gardner-Morse, M.G. and Huston, D.R. (1993), "Modal identification of cable-stayed pedestrian bridge", J. Struct. Eng., 119(11), 3384-3404. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:11(3384).
- Ge, Y., Lin, Z., Cao, F., Pang, J. and Xiang, H. (2002), "Investigation and prevention of deck galloping oscillation with computational and experimental techniques", J. Wind Eng. Ind. Aerod., 90(12-15), 2087-2098. https://doi.org/10.1016/S0167-6105(02)00326-4.
- Heinemeyer, C. and Feldmann, M. (2009), "European design guide for footbridge vibration", CRC Press.
- Heinemeyer, C., Butz, C., Keil, A., Schlaich, M., Goldack, A., Trometer, S., Lukic, M., Chabrolin, B., Lemaire, A. and Martin, P.O. (2009), "Design of leightweight footbridges for human induced vibrations".
- Holmes, J.D. (2018), "Wind loading of structures", CRC Press.
- Larsen, A. (2017), "Aerodynamics of large bridges", Routledge.
- Li, M., Sun, Y., Jing, H. and Li, M. (2018), "Vortex-induced vibration optimization of a wide streamline box girder by wind tunnel test", KSCE J. Civil Eng., 22(12), 5143-5153. https://doi.org/10.1007/s12205-018-0548-y
- Li, S., An, Y., Wang, C. and Wang, D. (2017), "Experimental and numerical studies on galloping of the flat-topped main cables for the long span suspension bridge during construction", J. Wind Eng. Ind. Aerod., 163, 24-32. https://doi.org/10.1016/j.jweia.2017.01.012.
- Li, Z., Zhou, Q., Liao, H. and Ma, C. (2018), "Numerical studies of the suppression of vortex-induced vibrations of twin box girders by central grids", Wind Struct., 26(5), 305-315. https://doi.org/10.12989/was.2018.26.5.305.
- Ma, C.M., Liao, H.L., Zheng, S.X. and Li, J.S. (2005), "Wind tunnel experiment on the aerodynamic performances of H-shaped booms", Zhongguo Tiedao Kexue, 26(4), 42-46.
- Ma, W., Liu, Q. and Matsumoto, M. (2019), "Excitation of the large-amplitude vibrations of a circular cylinder under normal wind conditions in the critical Reynolds number range", J. Fluid. Struct., 84, 318-328. https://doi.org/10.1016/j.jfluidstructs.2018.11.008.
- MA, W.Y. and GU, M. (2012), "Galloping instability of two degree of freedom of iced conductor with swing", Eng. Mech., 1(30).
- Mulas, M.G., Lai, E. and Lastrico, G. (2018), "Coupled analysis of footbridge-pedestrian dynamic interaction", Eng. Struct., 176(1), 127-142. https://doi.org/10.1016/j.engstruct.2018.08.055.
- Nikitas, N. and Macdonald, J. (2015), "Aerodynamic forcing characteristics of dry cable galloping at critical Reynolds numbers", European J. Mech.-B/Fluids, 49(Part A), 243-249. https://doi.org/10.1016/j.euromechflu.2014.09.005.
- Novak, M. (1972), "Galloping oscillations of prismatic structures", J. Eng. Mech., 98(1), http://worldcat.org/issn/07339399.
- Occhiuzzi, A., Spizzuoco, M. and Ricciardelli, F. (2008), "Loading models and response control of footbridges excited by running pedestrians", Struct. Control Health Monit., 15(3), 349-368. https://doi.org/10.1002/stc.248.
- Parkinson, G. and Smith, J. (1964), "The square prism as an aeroelastic non-linear oscillator", Quarterly J. Mech. Appl. Mathe., 17(2), 225-239. https://doi.org/10.1093/qjmam/17.2.225
- Piccardo, G., Carassale, L. and Freda, A. (2011), "Critical conditions of galloping for inclined square cylinders", J. Wind Eng. Ind. Aerod., 99(6-7), 748-756. https://doi.org/10.1016/j.jweia.2011.03.009.
- Sarwar, M.W. and Ishihara, T. (2010), "Numerical study on suppression of vortex-induced vibrations of box girder bridge section by aerodynamic countermeasures", J. Wind Eng. Ind. Aerod., 98(12), 701-711. https://doi.org/10.1016/j.jweia.2010.06.001
- Sun, Y., Li, M. and Liao, H. (2013), "Investigation on vortex-induced vibration of a suspension bridge using section and full aeroelastic wind tunnel tests", Wind Struct., 17(6), 565-587. https://doi.org/10.12989/was.2013.17.6.565.
- Tang, Y., Zheng, S. and Li, M. (2015), "A numerical investigation on galloping of an inclined square cylinder in a smooth flow", J. Wind Eng. Ind. Aerod., 144, 165-171. https://doi.org/10.1016/j.jweia.2015.03.008.
- Vladimir, S., Michal, P. and Tomas, P. (2017), "A Dynamic Analysis of the Cable-Stayed Footbridge in Celakovice Town", Procedia Eng., 199, 2877-2882. https://doi.org/10.1016/j.proeng.2017.09.582.
- Zhou, Q., Liao, H. and Wang, T. (2018), "Numerical study on aerostatic instability modes of the double-main-span suspension bridge", Shock Vib., 2018. https://doi.org/10.1155/2018/7458529.
- Zhou, Z., Chen, A. and Xiang, H. (2006), "On the mechanism of torsional flutter instability for 1st Tacoma Narrow Bridge by discrete vortex method", CWE. 505-508.
- Zhou, Z., Yang, T., Ding, Q. and Ge, Y. (2015), "Mechanism on suppression in vortex-induced vibration of bridge deck with long projecting slab with countermeasures", Wind Struct., 20(5), 643-660. https://doi.org/10.12989/was.2015.20.5.643.
- Zivanovic, S., Pavic, A. and Reynolds, P. (2005), "Vibration serviceability of footbridges under human-induced excitation: a literature review", J. Sound Vib., 279(1-2), 1-74. https://doi.org/10.1016/j.jsv.2004.01.019