References
- Galatz LM, Sandell LJ, Rothermich SY, Das R, Mastny A, Havlioglu N, et al. Characteristics of the rat supraspinatus tendon during tendon-to-bone healing after acute injury. J Orthop Res 2006; 24: 541-550 https://doi.org/10.1002/jor.20067
- Thomopoulos S, Williams GR, Soslowsky LJ. Tendon to bone healing: differences in biomechanical, structural, and compositional properties due to a range of activity levels. J Biomech Eng 2003; 125: 106-113 https://doi.org/10.1115/1.1536660
- Gulotta LV, Kovacevic D, Ehteshami JR, Dagher E, Packer JD, Rodeo SA. Application of bone marrow-derived mesenchymal stem cells in a rotator cuff repair model. Am J Sports Med 2009; 37: 2126-2133 https://doi.org/10.1177/0363546509339582
- Cole BJ, McCarty 3rd LP, Kang RW, Alford W, Lewis PB, Hayden JK. Arthroscopic rotator cuff repair: prospective functional outcome and repair integrity at minimum 2-year follow-up. J Shoulder Elbow Surg 2007; 16: 579-585 https://doi.org/10.1016/j.jse.2006.12.011
- Schwartz AG, Pasteris JD, Genin GM, Daulton TL, Thomopoulos S. Mineral distributions at the developing tendon enthesis. PLoS One 2012; 7: e48630 https://doi.org/10.1371/journal.pone.0048630
- Wopenka B, Kent A, Pasteris JD, Yoon Y, Thomopoulos S. The tendon-to-bone transition of the rotator cuff: a preliminary Raman spectroscopic study documenting the gradual mineralization across the insertion in rat tissue samples. 2008; 62: 1285-1294 https://doi.org/10.1366/000370208786822179
- Rossetti L, Kuntz LA, Kunold E, Schock J, Muller KW, Grabmayr H, et al. The microstructure and micromechanics of the tendon-bone insertion. Nat Mater 2017; 16: 664-670 https://doi.org/10.1038/nmat4863
- Lu HH, Subramony SD, Boushell MK, Zhang X. Tissue engineering strategies for the regeneration of orthopedic interfaces. Ann Biomed Eng 2010; 38: 2142-2154 https://doi.org/10.1007/s10439-010-0046-y
- Lipner J, Shen H, Cavinatto L, Liu W, Havlioglu N, Xia Y, et al. In Vivo Evaluation of Adipose-Derived Stromal Cells Delivered with a Nanofiber Scaffold for Tendon-toBone Repair. Tissue Eng Part A 2015; 21: 2766-2774 https://doi.org/10.1089/ten.tea.2015.0101
- Harryman 2nd DT, Mack LA, Wang KY, Jackins SE, Richardson ML, Matsen 3rd FA. Repairs of the rotator cuff. Correlation of functional results with integrity of the cuff. J Bone Joint Surg Am 1991; 73: 982-989 https://doi.org/10.2106/00004623-199173070-00004
- Lu HH, Thomopoulos S. Functional attachment of soft tissues to bone: development, healing, and tissue engineering. Annu Rev Biomed Eng 2013; 15: 201-226 https://doi.org/10.1146/annurev-bioeng-071910-124656
- Liu W, Lipner J, Xie J, Manning CN, Thomopoulos S, Xia Y. Nanofiber scaffolds with gradients in mineral content for spatial control of osteogenesis. ACS Appl Mater Interfaces 2014; 6: 2842-2849 https://doi.org/10.1021/am405418g
- Zhang X, Bogdanowicz D, Erisken C, Lee NM, Lu HH. Biomimetic scaffold design for functional and integrative tendon repair. J Shoulder Elbow Surg 2012; 21: 266-277 https://doi.org/10.1016/j.jse.2011.11.016
- Benjamin M, Evans EJ, Copp L. The histology of tendon attachments to bone in man. J Anat 1986; 149: 89-100
- Benjamin M, Kumai T, Milz S, Boszczyk BM, Boszczyk AA, Ralphs JR. The skeletal attachment of tendons--tendon "entheses". Comp Biochem Physiol A Mol Integr Physiol 2002; 133: 931-945 https://doi.org/10.1016/S1095-6433(02)00138-1
- Blevins FT, Djurasovic M, Flatow EL, Vogel KG. Biology of the rotator cuff tendon. Orthop Clin North Am 1997; 28: 1-16 https://doi.org/10.1016/s0030-5898(05)70260-1
- Kumagai J, Sarkar K, Uhthoff HK, Okawara Y, Ooshima A. Immunohistochemical distribution of type I, II and III collagens in the rabbit supraspinatus tendon insertion. J Anat 1994; 185: 279-284
- Thomopoulos S, Williams GR, Gimbel JA, Favata M, Soslowsky LJ. Variations of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J Orthop Res 2003; 21: 413-419 https://doi.org/10.1016/S0736-0266(03)00057-3
- Moffat KL, Sun WH, Pena PE, Chahine NO, Doty SB, Ateshian GA, et al. Characterization of the structure-function relationship at the ligament-to-bone interface. Proc Natl Acad Sci U S A 2008; 105: 7947-7952 https://doi.org/10.1073/pnas.0712150105
- Woo SL, Gomez MA, Seguchi Y, Endo CM, Akeson WH. Measurement of mechanical properties of ligament substance from a bone-ligament-bone preparation. J Orthop Res 1983; 1: 22-29 https://doi.org/10.1002/jor.1100010104
- Lu HH, Jiang J. Interface tissue engineering and the formulation of multiple-tissue systems. Adv Biochem Eng Biotechnol. 2006; 102: 91-111
- Dormer NH, Berkland CJ, Detamore MS. Emerging techniques in stratified designs and continuous gradients for tissue engineering of interfaces. Ann Biomed Eng 2010; 38: 2121-2141 https://doi.org/10.1007/s10439-010-0033-3
- Lipner J, Liu W, Liu Y, Boyle J, Genin GM, Xia Y, Thomopoulos S. The mechanics of PLGA nanofiber scaffolds with biomimetic gradients in mineral for tendon-to-bone repair. J Mech Behav Biomed Mater 2014; 40: 59-68 https://doi.org/10.1016/j.jmbbm.2014.08.002
- Hu Y, Birman V, Deymier-Black A, Schwartz AG, Thomopoulos S, Genin GM. Stochastic interdigitation as a toughening mechanism at the interface between tendon and bone. Biophys J 2015; 108: 431-437 https://doi.org/10.1016/j.bpj.2014.09.049
- Kim H, Jung G, Yoon J, Han J, Park Y, Kim D, et al. Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appln 2015; 54: 20-25 https://doi.org/10.1016/j.msec.2015.04.033
- Screen HRC, Lee DA, Bader DL, Shelton JC. An investigation into the effects of the hierarchical structure of tendon fascicles on micromechanical properties. Proc Inst Mech Eng H 2004; 218: 109-119
- Zhu C, Pongkitwitoon S, Qiu J, Thomopoulos S, Xia Y. Design and Fabrication of a Hierarchically Structured Scaffold for Tendon-to-Bone Repair. Adv Mater 2018; 30: e17073063