DOI QR코드

DOI QR Code

A RETRIAL QUEUEING MODEL WITH THRESHOLDS AND PHASE TYPE RETRIAL TIMES

  • CHAKRAVARTHY, SRINIVAS R. (Departments of Industrial and Manufacturing Engineering & Mathematics, Kettering University)
  • Received : 2019.08.01
  • Accepted : 2020.02.11
  • Published : 2020.05.30

Abstract

There is an extensive literature on retrial queueing models. While a majority of the literature on retrial queueing models focuses on the retrial times to be exponentially distributed (so as to keep the state space to be of a reasonable size), a few papers deal with nonexponential retrial times but with some additional restrictions such as constant retrial rate, only the customer at the head of the retrial queue will attempt to capture a free server, 2-state phase type distribution, and finite retrial orbit. Generally, the retrial queueing models are analyzed as level-dependent queues and hence one has to use some type of a truncation method in performing the analysis of the model. In this paper we study a retrial queueing model with threshold-type policy for orbiting customers in the context of nonexponential retrial times. Using matrix-analytic methods we analyze the model and compare with the classical retrial queueing model through a few illustrative numerical examples. We also compare numerically our threshold retrial queueing model with a previously published retrial queueing model that uses a truncation method.

Keywords

References

  1. J.R. Artalejo, Accessible Bibliography on Retrial Queues, Mathematical and Computer Modelling, 30 (1999), 1-6. https://doi.org/10.1016/S0895-7177(99)00128-4
  2. J.R. Artalejo, M.J. Lopez-Herrero, On the Busy Period of the M/G/1 Retrial Queue, Naval Research Logistics 47 (2000), 115-127. https://doi.org/10.1002/(SICI)1520-6750(200003)47:2<115::AID-NAV3>3.0.CO;2-C
  3. J.R. Artalejo, A. Gomez-Corral, M.F. Neuts, Analysis of multiserver queues with constant retrial rate, Euro. J. Oper. Res. 135 (2002), 569-581. https://doi.org/10.1016/S0377-2217(00)00330-1
  4. J.R. Artalejo, S.R. Chakravarthy, Algorithmic Analysis of a MAP/PH/1 Retrial Queue, TOP 14 (2006), 293-332. https://doi.org/10.1007/BF02837565
  5. J.R. Artalejo, A. Economou, M.J. Lopez-Herrero, Algorithmic approximations for the busy period distribution of the M/M/c retrial queue, Euro. J. Oper. Res. 176 (2007), 1687-1702. https://doi.org/10.1016/j.ejor.2005.10.034
  6. J.R. Artalejo, A. Gomez-Corral, Modelling communication systems with phase type service and retrial times, IEEE Communications Letters 11 (2007), 955-957. https://doi.org/10.1109/LCOMM.2007.070742
  7. J.R. Artalejo, S.R. Chakravarthy, M.J. Lopez-Herrero, The busy period and the waiting time analysis of a MAP/M/c queue with finite retrial group, Stochastic Analysis and Applications 25 (2007), 445-469. https://doi.org/10.1080/07362990601139651
  8. J.R. Artalejo, A. Gomez-Corral, Retrial Queueing Systems: A Computational Approach, Springer-Verlag, Berlin, Heidelberg, 2008.
  9. K. Avrachenko, U. Yechiali, Retrail networks with finite buffers and their application to internet data traffc, Probability in the Engineering and Informational Sciences 22 (2008), 519-536. https://doi.org/10.1017/S0269964808000314
  10. K. Avrachenko, U. Yechiali, On tandem blocking queues with a common retrial queue, Computers and Operations Research 37 (2010), 1174-1180. https://doi.org/10.1016/j.cor.2009.10.004
  11. N. Baer, R.J. Boucherie, J-K. Ommeren, The PH/PH/1 multi-threshold queues, In: B. Sericola, M. Telek, and G. Horvath (Eds.): ASMTA 2014, LNCS 8499, 95-109. Springer International Publishing Switzerland, 2014.
  12. S.R. Chakravarthy, A. Krishnamoorthy and V.C. Joshua, Analysis of a Multi-server Retrial Queue with Search of Customers from the Orbit, Performance Evaluation 63 (2006), 776-798. https://doi.org/10.1016/j.peva.2005.09.002
  13. S.R. Chakravarthy, A Multi-server Queueing Model with Markovian Arrivals and Multiple Thresholds, Asia-Pacific Journal of Operational Research 24 (2007), 223-243. https://doi.org/10.1142/S0217595907001164
  14. S.R. Chakravarthy, A multi-server synchronous vacation model with thresholds and a probabilistic decision rule, European Journal of Operational Research 182 (2007), 305-320. https://doi.org/10.1016/j.ejor.2006.07.037
  15. S.R. Chakravarthy, Analysis of MAP/PH/c retrial queue with phase type retrials - Simulation approach, Communications in Computer and Information Science 356 (2013), 37-49. https://doi.org/10.1007/978-3-642-35980-4_6
  16. B.D. Choi, Y.W. Shin, W.C. Ahn, Retrial queues with collision arising from unslotted CSMA/CD protocol, Queueing Systems 11 (1992), 335-356. https://doi.org/10.1007/BF01163860
  17. D.I. Choi, T.S. Kim, S. Lee, Analysis of an MMPP/G/1/K Queue with Queue Length Dependent Arrival Rates, and its Application to Preventive Congestion Control in Telecommunication Networks, European Journal of Operational Research 187 (2008), 652-659. https://doi.org/10.1016/j.ejor.2007.03.030
  18. J.E. Diamond, A.S. Alfa, Approximation method for M/PH/1 retrial queues with phase type inter-retrial times, European Journal of Operational Research 113 (1999), 620-631. https://doi.org/10.1016/S0377-2217(98)00004-6
  19. D.V. Efrosinin, Controlled Queueing Systems with Heterogeneous Servers, Ph.D. Dissertation, Trier University, Germany, 2004.
  20. D. Efrosinin, L. Breuer, Threshold policies for controlled retrial queues with heterogeneous servers, Ann Oper Res 141 (2006), 139-162. https://doi.org/10.1007/s10479-006-5297-5
  21. G.I. Falin, J.G.C. Templeton, Retrial Queues, Chapman and Hall, London, 1997.
  22. A. Graham, Kronecker Products and Matrix Calculus with Applications, Ellis Horwood, Chichester, UK, 1981.
  23. Q.M. He, H. Li, Y.Q. Zhao, Ergodicity of the BMAP/PH/s/s + K retrial queue with PH-retrial times, Queueing Systems 35 (2000), 323-347. https://doi.org/10.1023/A:1019110631467
  24. O.C. Ibe, J. Keilson, Multi-server threshold queues with hysteresis, Performance Evaluation 21 (1995), 185-2135. https://doi.org/10.1016/0166-5316(94)E0043-I
  25. S.B. Khodadadi, F. Jolai, A fuzzy based threshold policy for a single server retrial queue with vacations, Central European Journal of Operations Research 20 (2012), 281-297. https://doi.org/10.1007/s10100-010-0169-0
  26. J. Kim, B. Kim, A survey of retrial queueing systems, Ann. Oper. Res. 247 (2016), 3-36. https://doi.org/10.1007/s10479-015-2038-7
  27. G. Latouche, V. Ramaswami, Introduction to matrix analytic methods in stochastic modeling, SIAM, 1999.
  28. W. Lin, P.R. Kumar, Optimal Control of a Queueing System with two Heterogeneous Servers IEEE Trans. on Autom. Control 29 (1984), 696-703. https://doi.org/10.1109/TAC.1984.1103637
  29. H. Luh, I. Viniotis, Threshold control policies for heterogeneous server systems, Mathematical Methods of OR 55 (2002), 121-142. https://doi.org/10.1007/s001860100168
  30. M. Marcus, H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Boston, MA, 1964.
  31. M.F. Neuts, Matrix-geometric solutions in stochastic models: An algorithmic approach, The Johns Hopkins University Press, Baltimore, MD. [1994 version is Dover Edition], 1981.
  32. R. Nobel, H.C. Tijms, Optimal Control of a Queueing System with Heterogeneous Servers, IEEE Transactions on Autom. Control 45 (2002), 780-784.
  33. V. Ponomarov, E. Lebedev, Finite Source Retrial Queues with State-Dependent Service Rate, Communications in Computer and Information Science 356 (2013), 140146.
  34. V. Ponomarov, E. Lebedev, Optimal Control of Retrial Queues with Finite Population and State-Dependent Service Rate, Advances in Intelligent Systems and Computing 754 (2018), 359-369. https://doi.org/10.1007/978-3-319-91008-6_36
  35. V.V. Rykov, D.V. Efrosinin, Numerical Analysis of Optimal Control Polices for Queueing Systems with Heterogeneous Servers, Information Processes 2 (2002), 252-256.
  36. M. Senthilkumar, K. Sohraby, K. Kim, On a multiserver retrial queue with phase type retrial time, Mathematical and Computational Models. Eds: R. Nadarajan et al., 65-78, 2012, Narosa Publishing House, New Delhi, India.
  37. Y.W. Shin, Algorithmic solutions for M/M/c retrial queue with PH2 retrial time, Journal of Applied Mathematics and Informatics 29 (2011), 803-811. https://doi.org/10.14317/JAMI.2011.29.3_4.803
  38. Y.W. Shin, D.H. Moon, Approximation of M/M/c retrial queue with PH-retrial times, European Journal of Operational Research 213 (2011), 205-209. https://doi.org/10.1016/j.ejor.2011.03.024
  39. W-H. Steeb and Y. Hardy, Matrix Calculus and Kronecker Product, World Scientific Publishing, Singapore, 2011.
  40. T. Yang, M.J.M. Posner, J.G.C. Templeton, H. Li, An approximation method for the M/G/1 retrial queues with general retrial times, European Journal of Operational Research 76 (1994), 552-562. https://doi.org/10.1016/0377-2217(94)90286-0

Cited by

  1. ANALYSIS OF M/M/c RETRIAL QUEUE WITH THRESHOLDS, PH DISTRIBUTION OF RETRIAL TIMES AND UNRELIABLE SERVERS vol.39, pp.1, 2020, https://doi.org/10.14317/jami.2021.173