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A STUDY OF SPECTRAL ELEMENT METHOD FOR

ELLIPTIC INTERFACE PROBLEMS WITH NONSMOOTH

SOLUTIONS IN R2†
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Abstract. The solution of the elliptic partial differential equation has

interface singularity at the points which are either the intersections of in-

terfaces or the intersections of interfaces with the boundary of the domain.
The singularities that arises in the elliptic interface problems are very com-

plex. In this article we propose an exponentially accurate nonconforming

spectral element method for these problems based on [7, 18]. A geometric
mesh is used in the neighbourhood of the singularities and the auxiliary

map of the form z = ln ξ is introduced to remove the singularities. The

method is essentially a least-squares method and the solution can be ob-
tained by solving the normal equations using the preconditioned conjugate

gradient method (PCGM) without computing the mass and stiffness ma-
trices. Numerical examples are presented to show the exponential accuracy

of the method.
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1. Introduction

An interface problem is a special case of an elliptic differential equation with
discontinuous coefficients. Such interface problems arise in different situations,
for example, in heat conduction or in elasticity problems whose solution domains
are composed of several different materials. There are different kinds of elliptic
interface problems: the interface problems with smooth interfaces, the interface
problems with nonsmooth solutions etc. When the interface is smooth enough
the solution of the interface problem is also very smooth in the individual regions
but global regularity is low, i.e the solution u ∈ H1(Ω) and u /∈ Hk(Ω) for
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k ≥ 2. This case has been widely addressed in the literature using finite element
methods [3, 4, 5], immersed interface methods [20] and least-squares methods [6]
etc. For further information on this problem and existing numerical approaches
in the literature, refer to [18]. In this article we consider the interface problems
with nonsmooth solutions.

In the solution of the elliptic boundary value problems, singularities may
occur when the boundary is not smooth [9] or when the boundary is smooth yet
one or more data are not smooth. The second type of singularity typically arises
in interface problems. The singularities that arises in the interface problems
are very complex. The solution of the elliptic differential equation has interface
singularity at the points which are either the intersections of interfaces or the
intersections of interfaces with the boundary of the domain. The solution also
has singular behavior at the points where the interfaces crosses each other. The
interface singularity at the crossing of interfaces is very strong.

The singularities in interface problems has been studied by Kellogg (consid-
ered the interface problem for Poisson equation) in [12]. In [13] Kellogg had stud-
ied the Poisson equation with intersecting interfaces. The complexity depends
on the structure of the eigenvalues of Sturm-Liouville problems corresponding
to the singularities. The elliptic interface problems with singularities also has
been studied in [14, 22, 23].

The conventional numerical approaches (the finite difference as well as finite
element) may fail to provide any practical engineering accuracy at a reasonable
cost. In [3] Babuska studied the interface problem in the frame work of finite
element method. The rates of convergence are algebraic for the h−version and
p−version of the finite element method. The mesh refinements techniques gives
reasonably good results but they require longer computing time and also cannot
give acceptable result when the singularities are very strong. The method of
auxiliary map has been introduced in [24] for the interface problems by Oh
and Babuska in the framework of p− version of FEM (originally introduced
in [21] for elliptic problems containing singularities as MAM). With a proper
choice of auxiliary mappings this method gives better results than the mesh
refinements when the interface singularities are very strong. An optimal choice
of the auxiliary mappings requires a prior knowledge of the structure of the
interface singularities at the singular points.

In [1] an exponentially accurate method (hp finite element) has been proposed
by Babuska and Guo for the elliptic problems with analytic data on the non-
smooth domains like the domains with cracks, re-entrant corners. Geometric
mesh has been considered near the corners to resolve the singularities in the
solution. They have studied the regularity of the solution in the framework of

weighted Sobolev space Hk,2
β (Ω) and the countably normed space Blβ(Ω). In

[2] Babuska and Guo have analyzed the regularity of the interface problem in
terms of countably normed spaces. In [10] Guo and H. S. Oh analyzed the hp
version of the finite element method for problems with interfaces. They have
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used geometric mesh near the singularities and shown the exponential accuracy.
Geometric mesh together with the auxiliary mapping technique gives better re-
sults even if the singularities are extremely severe. They have also presented the
theoretical results for interface problems. The theoretical results and numeri-
cal scheme of this version can also be applied to general elliptic equations and
systems, including elasticity problems with homogeneous and non-homogeneous
materials.

In [11] H. Hon and Z. Huang introduced the direct method of lines for nu-
merical solution of interface problems. The interface problem is reduced to
variational-differential (V-D) problem on semi-infinite strip in ρ and φ vari-
ables by using a suitable transformation of coordinates. Furthermore, the V-D
problem is discretized respect with the variable φ and solved numerically. This
method requires no prior knowledge of the constructure of the singularity at the
singular point.

In [7, 16, 17] P. Dutt et al. proposed an exponentially accurate nonconforming
hp/spectral element method to solve general elliptic boundary value problems
with mixed Neumann and Dirichlet boundary conditions on non-smooth do-
mains. In [18], a spectral element method for elliptic interface problems with
smooth interfaces has been introduced and this has been extended to the elastic-
ity interface problems in [15]. Blending elements have been used to completely
resolve the interface and higher order approximation has been used.

In this article we propose a nonconforming spectral element method for elliptic
interface problems with singularities based on [7, 16, 17]. A geometric mesh is
used in the neighbourhood of the vertices and the auxiliary map of the form
z = ln ξ is introduced to remove the singularities at the corners, which was
first introduced by Kondratiev in [19]. In the remaining part of the domain
usual Cartesian coordinate system is used. The proposed method is essentially
a least-squares method.

In the least-squares formulation of the method, a solution is sought which
minimizes the sum of the squares of a weighted squared norms of the residuals
in the partial differential equation and the sum of the squares of the residuals in
the boundary conditions in fractional Sobolev norms and the sum of the squares
of the jumps in the value and its normal derivatives of the function across the
interface in appropriate fractional Sobolev norms and enforce the continuity
along the inter element boundaries by adding a term which measures the sum of
the squares of the jump in the function and its derivatives in fractional Sobolev
norms.

The spectral element functions are nonconforming. The solution can be ob-
tained by solving the normal equations using the preconditioned conjugate gradi-
ent method (PCGM) without computing the mass and stiffness matrices [16, 25].
An efficient preconditioner is used for the method which is a block diagonal ma-
trix, where each diagonal block corresponds to an element [8]. The condition

number of the preconditioner is O (lnW )
2
, where W is the degree of the ap-

proximating polynomial. Let N denote the number of layers in the geometric
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mesh such that W is proportional to N . Then the method requires O(W lnW )
iterations of the PCGM to obtain the solution to exponential accuracy.

Here we define some Sobolev norms which are used in this article. Denote
by Hm(Ω) the Sobolev space of functions with square integrable derivatives of
integer order ≤ m on Ω (a domain) furnished with the norm

‖ u ‖2Hm(Ω)=
∑
|α|≤m

‖ Dαu ‖2L2(Ω) .

Further, let

‖u‖2s,I =

∫
I

u2(x)dx+

∫
I

∫
I

|u(x)− u(x′)|2

|x− x′|1+2s dxdx′

denote the fractional Sobolev norm of order s, where 0 < s < 1. Here I denotes
an interval contained in R.

For the definitions of the other function spaces which appears in this article,
refer to [1, 9, 10]. Throughout the article we use x = (x1, x2) to represent a
point on R2 (in Cartesian coordinate system).

The contents of this paper are organized as follows: In Section 2 the elliptic
interface problem is defined. Discretization of the domain and local transforma-
tion are described in Section 3. In Section 4, the numerical scheme has been
derived. In Section 5 the computational results are provided for few test prob-
lems.

2. Interface Problem

In this section we state define the elliptic interface problem. For the conve-
nience of the reader, we consider the polygonal domain as shown in the figure
1 for defining the interface problem, discretization and deriving the numerical
scheme. The numerical method is also applicable for general polygonal domains
with more number of vertices.
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Figure 1. Polygonal domain with interfaces



A study of spectral element method for elliptic interface problems 315

Consider the polygonal domain Ω in R2 with boundary ∂Ω = Γ as shown in
the Fig. 1. Let Ei, i = 1, 2, 3, 4 be the vertices of the domain. Let Γ = ∪4

i=1Γi,
where Γi be the open edge of ∂Ω connecting Ei and Ei+1. By ωi we denote
the measure of the interior angle of Ω at Ei. Without loss of generality, we
will assume all interfaces meet at only one point E0 as shown in Fig. 1. Let
(r, θ) = (r0, θ0) be the polar co-ordinates at the point E0 and suppose Ω is de-
composed into four subdomains Ω1,Ω2,Ω3,Ω4 so that Ωk ∩ Ωk−1 is a straight
line interface Lk, Lk = {(r, θ) : θ = Θk, 0 ≤ r ≤ Rk}, for k = 1, 2, 3, 4.

Elliptic Interface Problem

Let us consider the following interface problem:

Lu = −∇.(p∇u) = f in ∪ Ωi

u = 0 on ΓD = ∪i∈DΓi
∂u

∂n
= g = GN |ΓN on ΓN = ∪i∈NΓi, (1)

where ΓD ∪ ΓN = ∂Ω,D ∪ N = {1, 2, 3, 4},D ∩ N = ∅, n = (n1, n2) is the unit
normal vector on ΓN and the coefficients are piecewise constants:

p =


p1 in Ω1

p2 in Ω2

. .

p4 in Ω4

. (2)

Assume that the interface conditions are satisfied. That is, on Lk, 1 ≤ k ≤ 4,
u satisfies

u(r,Θk − 0) = u(r,Θk + 0)

pk−1
∂u

∂n
(r,Θk − 0) = pk

∂u

∂n
(r,Θk + 0), (3)

where n = (n1, n2) is a unit normal vector to the interfaces Lk.
The asymptotic expansion, uniqueness and regularity of the solution of the

above problem (1) - (3) has been discussed in detail in [10]. It has been shown
that the solution has rλ type of singularity near the points Ei which is similar
to the singularity in the solution of elliptic problems on nonsmooth domains like
domains with cracks and reentrant corners. But the strength of the singularity
is strong in the elliptic interface problems.
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3. Discretization and Stability
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Figure 2. Discretization of the domain

Discretize the polygonal domain Ω into 5 non-overlapping polygonal subdo-
mains S0, S1, . . . , S4. Here each Sk for k = 1, 2, 3, 4 contains the vertex Ek only
and contains a part of the interface Lk and S0 contains the point E0 and contains
a part of all the interfaces Lk as shown in Fig. 2. Each subdomain Sk, k 6= 0
is a subset of union of two subdomains Ωi and Ωj for some i, j. For example
S1 ⊂ Ω1 ∪ Ω4 as shown in Fig. 2.

Let Sk =
{

Ωki,j : j = 1, 2, .., Jk, i = 1, 2, . . . , Ik
}

be a partition of Sk, k =
1, 2, 3, 4 where Jk and Ik are integers. Let Ik be bounded and constant for all
k = 1, 2, 3, 4. Let S0 =

{
Ω0
i,j : j = 1, 2, .., J0, i = 1, 2, . . . , I0 = 8} be a partition

of S0 such that subdomain division matches on the interface. Let (rk, θk) denote
polar coordinates with center at Ek.

Since the solution of the interface problem has singular behavior at Ei, i =
1, 2, 3, 4 where the interface intersects the boundary and also at E0 where the
interfaces meet each other, we consider the geometric mesh and use the auxil-
iary mapping near each point Ei. The description of the geometric mesh and the
auxiliary mapping is given below.

Geometric mesh near Ek, k 6= 0

Let
{
ψki
}
i=1,...,Ik+1

be an increasing sequence of points such that ψk1 = ψkl and

ψkIk+1 = ψku. Let ψki meet with interface for some i = I. That is, ψkI matches

with the interface Lk and hence separates Ωi and Ωj in Sk. Let ∆ψki = ψki+1−ψki .
Choose these points so that

max
k

(
max
i

∆ψki

)
≤ λmin

k

(
min
i

∆ψki

)
,

for some constant λ.
Let Πk = {(x1, x2) : 0 < rk < ρ} ⊆ Sk be a sector with sides Γk and

Γk+1. Now choose a geometric mesh with N layers in Πk with a geometric ratio

qk (0 < qk < 1) . Let σkj = ρ (qk)
N+1−j

for 2 ≤ j ≤ N + 1 and σk1 = 0.
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Let

Ωki,j =
{

(x1, x2) : σkj < rk < σkj+1, ψ
k
i < θk < ψki+1

}
,

for 1 ≤ i ≤ Ik, 1 ≤ j ≤ N.
Since Sk contains a part of the interface Lk and ψkI meet with it, the elements

ΩkI,j and ΩkI−1,j have the common edge which lies on the interface. For example,

the elements Ω1
I,j ⊂ Ω1 and Ω1

I−1,j ⊂ Ω4 in S1 have the common edge on the
interface L1.

Geometric mesh near E0

Let
{
ψ0
i

}
i=1,...,9

be an increasing sequence of points such that ψ0
1 = 0 and

ψ0
9 = 2π and ψ0

i for some i meet with interfaces Lk.
Let Π0 = {(x1, x2) : 0 < r0 < ρ} ⊆ S0 be a circular region around E0.

Now choose a geometric mesh with N layers in Π0 with a geometric ratio

q0 (0 < q0 < 1) . Let σ0
j = ρ (q0)

N+1−j
for 2 ≤ j ≤ N + 1 and σ0

1 = 0.
Let

Ω0
i,j =

{
(x1, x2) : σ0

j < r0 < σ0
j+1, ψ

0
i < θ0 < ψ0

i+1

}
,

for 1 ≤ i ≤ 8, 1 ≤ j ≤ N.

In the remaining part of Sk

In the remaining part of Sk, 1 ≤ k ≤ 4, we retain the Cartesian coordinate
system (x1, x2) i.e., in Ωki,j for 1 ≤ i ≤ Ik, N < j ≤ Jk.

Let

Ω1 =
{

Ωki,j : 1 ≤ i ≤ Ik, N < j ≤ Jk, 1 ≤ k ≤ 4
}
.

Similarly we retain the Cartesian coordinate system (x1, x2) in the remaining
part of S0.

Let

Ω0 =
{

Ω0
i,j : 1 ≤ i ≤ 8, N < j ≤ Jk

}
.

Here for i = 1, 8, Ω0
i,j ⊆ Ω3; i = 2, 3, Ω0

i,j ⊆ Ω2; i = 4, 5, Ω0
i,j ⊆ Ω1; i =

6, 7, Ω0
i,j ⊆ Ω4. For j > N, Ω0

1,j and Ω0
2,j have a common edge which lies on L3.

Similarly, the elements Ω0
1,j & Ω0

2,j Ω0
3,j & Ω0

4,j , Ω0
5,j & Ω0

6,j and Ω0
7,j & Ω0

8,j have
the common edges which lies on L3, L2, L1 and L4 respectively.

Auxiliary Mapping

Now let τk = ln rk in {(x1, x2) : 0 < rk < ρ} ⊆ Sk, 0 ≤ k ≤ 4. Define
ζkj = ln σkj for 1 ≤ j ≤ N + 1. Here ζk1 = −∞. Define

Ω̃ki,j =
{

(τk, θk) : ζkj < τk < ζkj+1, ψ
k
i < θk < ψki+1

}
,
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for 1 ≤ i ≤ Ik, 1 ≤ j ≤ N. Hence the geometric mesh Ωki,j , 2 ≤ j ≤ N becomes

a quasi-uniform mesh in modified polar coordinates (Fig. 3). However, Ω̃ki,1 is a
semi-infinite strip.
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Figure 3. Quasi uniform mesh in τk and θk coordinates near
Ek, k 6= 0.

Approximation

The nonconforming spectral element functions are sum of tensor products of
polynomials of degree Wj , 1 ≤ Wj ≤ W in their respective modified polar co-

ordinates (4) in Ω̃ki,j for 0 ≤ k ≤ 4, 1 ≤ i ≤ Ik, 2 ≤ j ≤ N. In the infinite sector

i.e., in Ω̃ki,1, the solution is approximated by a constant which is the value of the
function u at the corresponding point Ek. The constant value is computed by
treating it as a common boundary value during the numerical computation.

Let uki,1(τk, θk) = hk, a constant on Ω̃ki,1. Define the spectral element function

uki,j(τk, θk) =

Wj∑
r=0

Wj∑
s=0

gr,s τ
r
k θ

s
k, (4)

on Ω̃ki,j for 1 ≤ i ≤ Ik, 2 ≤ j ≤ N, 0 ≤ k ≤ 4. Here 1 ≤Wj ≤W.
Moreover there is an analytic mapping Mk

i,j from the master square S =

(−1, 1)2 to the elements Ωki,j in Ω0 and Ω1. Define

uki,j(M
k
i,j(ξ, η)) =

W∑
r=0

W∑
s=0

gr,s ξ
r ηs. (5)

4. Numerical Scheme

Here we describe the numerical formulation. This numerical method is essen-
tially a least-squares formulation based on [16, 18].

As defined in Section 3, Ω̃ki,j is the image of Ωki,j in (τk, θk) coordinates. Let

Lki,j be the operator defined by Lki,ju = r2
k Lu. Then the operator L̃ki,j in the
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transformed coordinates τk and θk is given by

L̃ki,ju = −p
(
∂2u

∂τ2
k

+
∂2u

∂θ2
k

)
.

Where p takes different values based on i value as explained in Section 3.
Next, let the vertex Ek =

(
xk1 , x

k
2

)
and

F ki,j (τk, θk) = e2τkf
(
xk1 + eτk cos θk, x

k
2 + eτk sin θk

)
in Ω̃ki,j for 0 ≤ k ≤ 4, 2 ≤ j ≤ N, 1 ≤ i ≤ Ik.
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Figure 4. Edge Γk common to Πk−1 and Πk

Consider the boundary ∂u
∂n = g on Γk ∩ ∂Πk for k ∈ N (see Fig. 4). Let

lk1(τk) =
∂uk

∂n
= eτk g(xk1 + eτkcos(ψkl ) , xk2 + eτksin(ψkl )).

Consider ∂u
∂n = g for k ∈ N on Γk ∩ ∂Πk−1(look at Fig. 4). Define

lk2(τk−1) =
∂uk

∂n
= eτk−1g(xk−1

1 + eτk−1cos(ψk−1
u ) , xk−1

2 + eτk−1sin(ψk−1
u )).
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As described in section 3, ψkI matches with the interface Lk, the elements ΩkI,j
and ΩkI−1,j have the common edge γs. Let γ̃s be the image of γs in τk and θk
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coordinates and therefore γ̃s is the common edge of Ω̃kI,j and Ω̃kI−1,j which lies
on Lk. We define the jump in the solution across γs ⊆ Lk

∥∥[uk]
∥∥2

3
2 ,γ̃s

=
∥∥ukI,j(τk, ψkI )− ukI−1,j(τk, ψ

k
I )
∥∥2

0,γ̃s

+

∥∥∥∥∥∂ukI,j∂τk
(τk, ψ

k
I )−

∂ukI−1,j

∂τk
(τk, ψ

k
I )

∥∥∥∥∥
2

1
2 ,γ̃s

.

Now we define the jump across the normal derivative across the interface

∥∥∥∥[p∂uk∂θk

]∥∥∥∥2

1
2 ,γ̃s

=

∥∥∥∥∥pk+1

∂ukI,j
∂θk

(τk, ψ
k
I )− pk

∂ukI−1,j

∂θk
(τk, ψ

k
I )

∥∥∥∥∥
2

1
2 ,γ̃s

.

In similar way, we define the term which measures the sum of the squares
of the jump in u and its derivatives with respect to τk and θk in appropriate
Sobolev norms along the inter-element boundaries.

In the remaining part of the domain, i.e on Ω1 and Ω0 the solution is smooth.
The residue in the equation and jumps across the interfaces and inter element
boundaries and residue at the boundary has been described in detail in [18].
Here we define the functional near the singularities and in the interior.

Let γs ⊆ Π̄k and d(Ek, γs) = inf
x∈γs
{distance(Ek, x)} . Choose αk = 1− βk

as defined in [7]. Let Fu =
{{
uki,j(τk, θk)

}
i,j,k

,
{
uki,j(ξ, η)

}
i,j,k

}
∈ ΠN,W , the

space of spectral element functions. Define ak = u(Ek).
Define the functional

r
N,W

vertices(Fu)

=

4∑
k=0

N∑
j=2

Ik∑
i=1

(ρµN+1−j
k )−2αk

∥∥∥(L̃ki,j)uki,j(τk, θk)− F ki,j (τk, θk)
∥∥∥2

0,Ω̃k
i,j

+

4∑
k=0

∑
γs⊆Πk,γs Lk
µ(γ̃s)<∞

d(Ek, γs)
−2αk

(∥∥[uk]
∥∥2

0,γ̃s
+
∥∥[(ukτk)]

∥∥2

1/2,γ̃s

+
∥∥[(ukθk)]

∥∥2

1/2,γ̃s

)

+

4∑
k=0

∑
γs⊆Lk

d(Ek, γs)
−2αk

(∥∥[uk]
∥∥2

3
2
,γ̃s

+

∥∥∥∥[p∂uk∂θk

]∥∥∥∥2

1
2 ,γ̃s

)

+
∑
m∈D

m∑
k=m−1

∑
γs⊆∂Πk∩Γm,
µ(γ̃s)<∞

d(Ek, γs)
−2αk

(∥∥(uk − hk)− (lmm−k+1 − ak)
∥∥2

0,γ̃s
(6)

+
∥∥ukτk − (lmm−k+1)τk

∥∥2

1/2,γ̃s

)
+
∑
m∈D

m∑
k=m−1

(hk − ak)2
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+
∑
m∈N

m∑
k=m−1

∑
γs⊆∂Πk∩Γm,
µ(γ̃s)<∞

d(Ek, γs)
−2αk

∥∥∥∥(∂uk∂n
)
− lmm−k+1

∥∥∥∥2

1/2,γ̃s

.

In the above µ(γ̃s) denotes the measure of γ̃s.
Define

r
N,W

interior (Fu)

=

4∑
k=0

Jk∑
j=N+1

Ik∑
i=1

∥∥(Lki,j)uki,j(ξ, η)− F ki,j (ξ, η)
∥∥2

0,Ωk
i,j

+
∑

γs⊆Ω0∪Ω1,γs Lk

(∥∥[uk]
∥∥2

0,γs
+
∥∥[(ukx1

)]
∥∥2

1/2,γs

+
∥∥[(ukx2

)]
∥∥2

1/2,γs

)

+
∑

γs⊆Lk⊆Ω0∪Ω1

(∥∥[uk]
∥∥2

3
2
,γs

+

∥∥∥∥[(p∂uk∂n
)]∥∥∥∥2

1/2,γs

)
(7)

+
∑
l∈D

∑
γs⊆∂Ω1∩Γl

(∥∥uk − ol,k∥∥2

0,γs
+

∥∥∥∥(∂uk∂T

)
−
(
∂ol,k

∂T

)∥∥∥∥2

1/2,γs

)

+
∑
l∈N

∑
γs⊆∂Ω1∩Γl

∥∥∥∥(∂uk∂n
)
− ol,k

∥∥∥∥2

1/2,γs

.

Let

r
N,W

(Fu) = r
N,W

vertices(Fu) + r
N,W

interior(Fu).

We choose as our approximate solution the unique Fz ∈ ΠN,W , the space of

spectral element functions, which minimizes the functional r
N,W

(Fu) over all Fu.
The method is essentially a least-squares method and the solution is ob-

tained at Gauss-Legendre-Lobatto points using preconditioned conjugate gradi-
ent method without storing the stiffness matrix and load vector. The residuals
in the normal equations can be computed efficiently and inexpensively as shown
in [17, 25].

The minimization leads to the normal equations

AU = h.

The vector U composed of the values of the spectral element functions at Gauss-
Legendre-Lobatto points is divided into two sub vectors one consisting of the
values of the spectral element functions at the vertices of the domain constitute
the set of common boundary values UB , and the other consisting of the remaining
values which we denote by UI . The computation of UI and UB is described in
[17, 25].

An efficient preconditioner has been used which is proposed in [8] for the
matrix A so that the condition number of the preconditioned system is as small
as possible. The condition number of the preconditioned system is O((lnW )2).
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The preconditioner is a block diagonal matrix, where each diagonal block is con-
structed using the separation of variable technique. So the solution is obtained
to an exponential accuracy using O(W lnW ) iterations of the PCGM. After ob-
taining the nonconforming solution at the Gauss-Legendre-Lobatto points, a set
of corrections are performed [26] so that the solution is conforming and belongs
to H1(Ω).

Then for W large enough the error estimate

‖u− uap‖1,Ω ≤ C e
−bW

holds, where C and b are constants and uap is the corrected solution.

5. Numerical Results

Here we consider few numerical examples to show the effectiveness of the pro-
posed method. For simplicity, we have considered Wj = W for all j and the num-

ber of layers N = W in the geometric mesh. The relative error ‖e‖ER =
‖e‖1
‖u‖1

,

where e = u− uap is the difference in the exact solution u and the approximate
solution uap measured in H1 norm. “Iters” is the total number of iterations to
compute UI and UB .

Example 1: Interface problem with singularity at the intersection
of an interface and the boundary

Let us consider the interface problem on the domain Ω = Ω1 ∪ Ω2 as shown
in Fig. 6

−∇.(p∇u) = 0 in Ω

u = 0 on Γ1

∂u

∂θ
= 0 on Γ2,

where the coefficient p is piecewise constant:

p =

{
1 in Ω1

p in Ω2.



A study of spectral element method for elliptic interface problems 323

(0,0)
(1,0)

(0,1)

Γ

Γ
Ω

Ω

 1

 2

p  =
1

p = p
2

    1

L
 1

1

2

Figure 6. The interface problem on a sector

Let (r, θ) be the polar coordinates centered at the origin (0, 0). Assume that
the interface conditions are satisfied at θ = π

4 . That is, on L1

u(r,
π

4
− 0) = u(r,

π

4
+ 0),

∂u

∂θ
(r,

π

4
− 0) = p

∂u

∂θ
(r,

π

4
+ 0).

Let the solution of the above interface problem be in the form rλW (θ). As
explained in [10, 24], λ and W (θ) can be obtained by solving the following
Sturm-Liouville problem corresponding to the above interface problem:

d

dθ
(p
dW

dθ
) + λ2pW = 0 in Ω, (8)

W (0) = 0,
dW

dθ
(
π

2
) = 0.

The function W (θ) required to satisfy

W (
π

4
− 0) = W (

π

4
+ 0), (9)

dW

dθ
(
π

4
− 0) = p

dW

dθ
(
π

4
+ 0).

The solution of the above differential equation W is of the form

W (θ) =

{
C1 cosλθ + C2 sinλθ in Ω1

C3 cosλθ + C4 sinλθ in Ω2

Therefore the solution of the interface problem has the following form

u1 = rλ(C1 cosλθ + C2 sinλθ) in Ω1,

u2 = rλ(C3 cosλθ + C4 sinλθ) in Ω2.

The constants C1, C2, C3 and C4 and the eigenvalues λ can be obtained using
the above defined boundary and interface conditions (8) and (9).
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Now, after applying the boundary conditions, we get

W (0) = 0→ C1 = 0,

dW

dθ
(
π

2
) = 0→ −C3 sin

λπ

2
+ C4 cos

λπ

2
= 0.

The interface conditions gives

W (
π

4
−) = W (

π

4
+)

⇒ C2 sin
λπ

4
− C3 cos

λπ

4
− C4 sin

λπ

4
= 0

and

dW

dθ
(
π

4
− 0) = p

dW

dθ
(
π

4
+ 0)

⇒ C2 cos
λπ

4
+ C3 psin

λπ

4
− C4 pcos

λπ

4
= 0.

So we have the following homogeneous system 0 −sinλπ2 cosλπ2
sinλπ4 −cosλπ4 −sinλπ4
cosλπ4 psinλπ4 −pcosλπ4

 C2

C3

C4

 =

 0
0
0

 . (10)

In order for the system of unknowns C2, C3, C4 to have a non-trivial solution,
the determinant of the coefficient matrix A of the system should be zero.∣∣∣∣∣∣

0 −sinλπ2 cosλπ2
sinλπ4 −cosλπ4 −sinλπ4
cosλπ4 psinλπ4 −pcosλπ4

∣∣∣∣∣∣ = 0

=⇒ (1− p)
2

sin2λπ

2
+ cos

λπ

2
+ (p− 1)sin2λπ

4
cos

λπ

2
= 0

=⇒ (1− p)
2

sin2λπ

2
+ cos

λπ

2
+

(p− 1)

2
(1− cos

λπ

2
)cos

λπ

2
= 0

=⇒ (1− p)
2

+

[
(p− 1)

2
+ 1

]
cos

λπ

2
= 0.

By solving (1−p)
2 +

[
(p−1)

2 + 1
]

cosλπ2 = 0, we obtain the eigenvalues λk which

are positive real values. The smallest eigenvalue λ0 among λk gives the value of
the exponent in the leading order singular term in the expansion of u. The value
of λ0 for different values of p is given in the following Table 1. The strength of
the singularity increases as p increases.
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p λ0

5 0.53544092
10 0.38996444
30 0.22992823
50 0.1788770
100 0.12690206

Table 1. The exponent of leading order singular term for dif-
ferent p

Now, we find the constants C2, C3 and C4. From the above linear system

C4 = C3

sinλπ2
cosλπ2

= C3 tan
λπ

2
.

We choose C3 = 1. Therefore C4 = tanλπ2 . Then, one can easily find the value of
C2 from any one of the equations in the linear system. The value of C2 is given
by

C2 = cot
λπ

4
+ tan

λπ

2
.

Therefore the leading order singular term in the expansion of u has the following
form

u1 = rλ0(cot
λ0π

4
+ tan

λ0π

2
)sinλ0θ in Ω1

u2 = rλ0(cosλ0θ + tan
λ0π

2
sinλ0θ) in Ω2.

Remark: The solution u has singular behavior at the point (0, 0) and the
strength of the singularity is very strong for larger values of p. These singu-
larities are more stronger than the singularities which generally arises in elliptic
problems due to the nonsmooth domains.

Now we present the numerical solution of this problem. We consider the
Dirichlet boundary condition on ρ = 1 ( Fig. 6). Since the strength of the
singularity is very strong at the corners a very refined mesh as well as higher
degree of approximation is needed to get a good accuracy. In [10] the numerical
solution is obtained using hp finite element method. They have used a geometric
mesh near the corner with geometric ratio 0.15 and tabulated the relative error
for different values of the degree of approximation W with 2W layers in the
geometric mesh in the radial direction.

In the following table we have presented the numerical results for p = 5. As
explained above the exponent in the leading order singular term in the solution
for p = 5 is 0.53544092. We consider the geometric ratio µ = 0.15. The relative
error is obtained for different values of W and shown in the following Table 2.
Table 2 also shows the number of iterations.
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W ‖e‖ER % Iters
2 11.254417 37
3 4.29850 77
4 1.541124 118
5 0.5575801 159
6 0.2017785 204
7 0.0730631 250
8 0.0264555 291
9 0.0095797 335

Table 2. The relative error and iterations against W

Fig. 7 shows the log of the relative error against the degree of approximation
W and the relation is linear. This shows the exponential accuracy of the method.
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Figure 7. Log of ‖e‖ER against W

Now we consider p = 10. The exponent in the leading order singular term of
the solution is 0.38996444. This is strong compared to the previous exponent.
So we need more refined grid near the singular point. Here we consider the
geometric ratio µ = 0.15 and µ = e−π. The relative error and iteration count for
different values of W is tabulated in the Table 3.
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µ = 0.15 µ = e−π

W ‖e‖ER % Iters ‖e‖ER % Iters
2 19.08735 44 7.19601 48
3 9.632562 95 2.300786 122
4 4.66738 159 0.676060 208
5 2.24022 226 0.198810 279
6 1.07102 290 0.058287 368
7 0.511375 346 0.017128 449
8 0.244061 424 0.00503136 525
9 0.116472 474 0.00147676 623

Table 3. The relative error and iterations against W for µ =
0.15 and µ = e−π

The error decays slowly for the geometric ratio µ = 0.15. One can get better
accuracy by increasing the number of layers in the geometric mesh. But this
increases the number of degrees of freedom. For µ = e−π the error decays
very fast with an increase in the iteration count. Even better accuracy can be
achieved with the geometric ratio µ = e−1.5π. In the Figure 8 the graph of log
of relative error vs. W has been drawn for µ = 0.15 and µ = e−π. The relation
is linear.
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Figure 8. Log of ‖e‖ER against W

Now we consider p = 30. In this case the exponent in the leading order
singular term of the solution is 0.22992823. Here we consider four different
geometric mesh with ratio µ = 0.15,µ = 0.15 with more number of layers (just
double of the degree of the approximation W ) in radial direction, µ = e−π and
µ = e−1.5π. The relative error and iterations are shown for different values of W
and for different geometric ratios in Table 4.
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µ = 0.15 µ = 0.15 µ = e−π µ = e−1.5π

W ‖e‖ER % Iters ‖e‖ER % Iters ‖e‖ER % Iters ‖e‖ER % Iters
2 32.48562 49 14.36468 103 18.848278 60 9.12371 63
3 22.58167 122 6.68331 244 10.28457 156 3.53691 169
4 15.27828 212 2.83311 402 5.123292 272 1.210048 326
5 10.16691 308 1.118838 551 2.50895 404 0.409445 500
6 6.68372 409 0.496950 721 1.22152 548 0.138267 713
7 4.36046 502 0.207736 891 0.593652 667 0.046691 898
8 0.015766 1051
9 0.005324 1263

Table 4. The relative error and iterations against W

The results shows the geometric ratio µ = e−1.5π gives better results. Even
better accuracy can be achieved with the geometric ratio µ = e−2π with an
increase in the number of iterations. The Fig. 9 shows the graph of log of
relative error against W for different values of µ. The relation is linear in all
cases but the convergence is faster for µ = e−1.5π.
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Figure 9. Log of ‖e‖ER against W

Now consider p = 50, 100. The exponents in the leading order singular term of
the solution are 0.1788770 and 0.12690206 respectively. So we need very refined
mesh in the neighbourhood of the singular point. So we consider the geometric
ratio µ = e−2π. The relative error and iterations are tabulated for different val-
ues of W in Table 5. The numerical results shows the good performance of the
method.
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p = 50 p = 100
W ‖e‖ER % Iters ‖e‖ER % Iters
2 8.353101 80 15.9732 92
3 3.119198 219 8.29721 241
4 1.019195 438 3.83097 475
5 0.330973 700 1.73125 778
6 0.106907 1030 0.777691 1137
7 0.034519 1354 0.348880 1486
8 0.011145 1631 0.156460 1806
9 0.003598 1967 0.0701626 2358

Table 5. The relative error and iterations against W

Fig. 10 shows the graph of log relative error against W for p = 50 and p = 100.
The relation is linear. This show the exponential convergence of the proposed
method.
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Example 2: Interface problem with singularity at the intersection of
two interfaces
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Ω
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Ω
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3π/2 r=1

Figure 11. The domain Ω with L1 and L2 meet at (0, 0)

Consider the following interface problem on the domain Ω as shown in Fig.
11.

−∇.(p∇u) = 0 in Ω,

where the coefficient p is piecewise constant:

p =

{
1 in Ω1

p in Ω2

with Dirichlet boundary condition on the circle of radius 1. Assume that the two
interfaces L1 = {(r, 0), 0 ≤ r ≤ 1} and L2 = {(r, π2 ), 0 ≤ r ≤ 1} meets at the
point E0 = (0, 0) and u satisfies the interface conditions

u(θ = 0) = u(θ = 2π) and
∂u

∂θ
(0) = p

∂u

∂θ
(2π),

u(
π

2
−) = u(

π

2
+) and

∂u

∂θ
(
π

2
−) = p

∂W

∂θ
(
π

2
+).

Here we are only interested in the behavior of the solution at (0, 0). So as
explained in Section 2, we need to solve the Sturm-Liouville problem

d

dθ
(p
dW

dθ
) + λ2pW = 0 in Ω

with

W (θ = 0) = W (θ = 2π) and
dW

dθ
(0) = p

dW

dθ
(2π),

W (
π

2
−) = W (

π

2
+) and

dW

dθ
(
π

2
−) = p

dW

dθ
(
π

2
+).

The solution of the above differential equation W is of the form

W (θ) =

{
C1 cosλθ + C2 sinλθ in Ω1

C3 cosλθ + C4 sinλθ in Ω2.
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As explained in the above example, we get a homogeneous system of equations
in unknowns C1, C2, C3 and C4. In order to have a non-trivial solution, the de-
terminant of the coefficient matrix A of the system should be zero. This gives
an equation in λ and the eigenvalues λ

′

ks are the solutions of this equation. We
have obtained the smallest eigenvalue λ0 for different values of p and tabulated
in the following Table 6.

p λ0

5 0.783653104062978
10 0.731691778699314
30 0.690135330693010
50 0.680988694144617
100 0.673921228717518
500 0.668132968861755

Table 6. The exponent of leading order singular term for dif-
ferent p

The singularities in this case are not so strong as the singularities which we
have seen in example 1.

We obtain the constants C1, C2, C3 and C4 using the above interface condi-
tions.

W (θ = 0) = W (θ = 2π)

=⇒ C1 = C3cos2πλ+ C4sin2πλ
dW

dθ
(0) = p

dW

dθ
(2π)

=⇒ C2 = −pC3sin2πλ+ pC4cos2πλ.

Now let C4 = 1. Then C1 = C3cos2πλ+sin2πλ and C2 = −C3psin2πλ+pcos2πλ.
Then one can easily find C3. The value of C3 is given by

C3 =
(sinλπ2 − p cos2πλ sinλπ2 − sin2πλ cosλπ2 )

(cos2πλ cosλπ2 − psin2πλ sinλπ2 − cosλπ2 )
.

Therefore the leading order singular term in the solution of the interface
problem is given by

u1 = rλ0(C1cosλ0θ + C2sinλ0θ) in Ω1,

u2 = rλ0(C3cosλ0θ + sinλ0θ) in Ω2

with the constants C1, C2 and C3 given above.
We have obtained the numerical solution for p = 500. Table 7 shows the

relative error and iterations for different values of W.
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W ‖e‖ER % Iters
2 28.5515688 42
3 2.16885204 170
4 0.58543007 306
5 0.16244907 467
6 0.04476168 674
7 0.01260480 840
8 0.00354783 997
9 0.00099866 1215

Table 7. The relative error for different values of W

Figure 12 shows the graph of log of relative error against W for p = 500. The
relation is linear. This shows the exponential accuracy of the method.
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Figure 12. Log of relative error against W

6. Conclusion

The proposed spectral element method for elliptic interface problem with
nonsmooth solutions is nonconforming and exponentially accurate. The inter-
face conditions are incorporated as jumps across the interfaces in appropriate
Sobolev norms in the least-squares formulation. The numerical method is also
applicable for general polygonal domains. The numerical solution has been ob-
tained efficiently and inexpensively using PCGM. A decoupled block diagonal
preconditioner has been used. More efficient preconditioner for the interface
problems is under investigation.
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