
J. Appl. Math. & Informatics Vol. 38(2020), No. 3 - 4, pp. 277 - 290
https://doi.org/10.14317/jami.2020.277

NUMERICAL ANALYSIS OF CHORDS SUMMATION

ALGORITHM FOR π VALUE†

HYUN IL PARK, SAURAV PAHADIA, CHRISTINE HWANG AND CHI-OK HWANG∗

Abstract. We propose and analyze a chord summation algorithm, which
combines the ideas of Viète and Archimedes to calculate the value of π. The

error of the algorithm decreases exponentially per iteration and becomes

pinched at a critical iteration, depending on the accuracy of the first input
value,

√
2. The critical iteration is also analyzed.

AMS Mathematics Subject Classification : 65D20, 65D99.

Key words and phrases : π value, chord summation algorithm, numerical
analysis.

1. Introduction

Pi(π), approximately 3.14 numerically, is widely applied in the fields of math-
ematics, science, and engineering. Due to its popularity, there have been many
attempts to calculate the numerical value of π more and more accurately. One
of the earliest methods to calculate π is Archimedes algorithm from the third
century BC [4], in which the perimeters of the inscribed and the circumscribed
regular polygons with 6 × 2nsides provide the lower and upper bounds of π re-
spectively. Viète in the 16th century [2] twisted the Archimedes algorithm by
considering the area of the regular polygons with 2n sides inscribed in a cir-
cle, giving the infinite product expression for the value of π. Brent-Salamin
algorithm [5] was also successful in calculating π, using converging arithmetic-
geometric mean and elliptic integrals. There are many other methods that are
also very fast and accurate for π calculation that are not mentioned here, in-
cluding Chudnovsky algorithm [3], Bailey-Borwein-Plouffe formula [1], and so
on.

Received December 9, 2019. Revised February 27, 2020. Accepted March 5, 2020.
∗Corresponding author.
†This research was supported by Basic Science Research Program through the National Re-

search Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning

(2017R1E1A1A03070543).

c© 2020 KSCAM.

277

278 Hyun Il Park, Saurav Pahadia, Christine Hwang and Chi-Ok Hwang

Figure 1. Geometry of a sector with unit radius and chords
xn and xn+1.

A new and intuitive algorithm for π calculation called chords summation algo-
rithm, which combines the ideas of Viète algorithm and Archimedes algorithm,
is introduced. The error of the algorithm decreases exponentially per iteration
until it becomes pinched and stops decreasing due to the approximation error of
the input of

√
2.

2. Derivation of Chords Summation Algorithm

Using a semicircle with a radius of 1, let xn be the length of a chord when
there are 2n congruent chords distributed within the semicircle. For example,
x1 is equal to

√
2, because two chords and the diameter form two isosceles right

triangles with a hypotenuse of 2. A recurrence relation is derived by considering
Figure 1.

Let point D lie on the semicircle such that line segment AD bisects the chord
perpendicularly. Let point C be the intersection between the chord and the
bisector AD. Let α be the length of the segment. Applying Pythagorean theorem
on 4ABC, an algebraic expression for α is

(xn
2

)2
+ α2 = r2 = 1. (1)

Numerical analysis of chords summation algorithm for π value 279

From Eq.(1), we obtain

α =

√
1− x2n

4
. (2)

Applying Pythagorean theorem on 4BCD, a recurrence relation is derived:

(1− α)
2

+
(xn

2

)2
= x2n+1. (3)

Inserting α from Eq.(2) into Eq.(3), we obtain(
1−

√
1− x2n

4

)2

+
(xn

2

)2
= x2n+1. (4)

Finally, the recurrence relation becomes

xn+1 =

√
2−

√
4− x2n. (5)

The value of xn can be successively obtained by starting with x1 =
√

2. Let
πn be the sum of all the length of the chords present at the nth iteration. Chords
summation algorithm calculates the value of πn,

πn = 2n × xn, (6)

which is convergent to π,

lim
n→∞

πn = π. (7)

πn is an appropriate choice in approximating π due to its quick exponential
convergence. This will be discussed in detail in the following section.

3. Numerical Analysis

3.1. Rate of Convergence. Let en be the absolute error between the approx-
imate and real value of π at the nth iteration:

en = |π − πn| = π − πn (∵ ∀n ∈ N, π ≥ πn) . (8)

In theory, en should converge to zero as n tends to infinity. However, in
practice, en eventually converges to a constant that is not zero. This is due to
the rounding error of

√
2, an irrational number that cannot be expressed exactly

on computer floating point numbering systems. The effect of this rounding error
on the deviation from the exponential decrease of en will be discussed in detail
in the next subsection.

In the following, it is proven that the error of chords summation algorithm,
en, decreases by a quarter per valid iteration.

280 Hyun Il Park, Saurav Pahadia, Christine Hwang and Chi-Ok Hwang

𝜽𝒏

𝒙𝒏

𝒙𝒏+𝟏

𝜽𝒏+𝟏

Figure 2. Geometry of a sector with unit radius, angles θn
and θn+1, and chords xn and xn+1

Theorem 3.1. The gradient of log10en is:

log10en+1 − log10en = log10

(
en+1

en

)
= −0.602. (9)

Proof. Let θn be the angle formed by chord xn in Figure 2, giving an equation
θn = 2× θn+1 = π/2n and xn = 2 sin (θn/2).

Ratio of errors between an iteration is calculated as the following:

en
en+1

=
π − πn
π − πn+1

=
π − 2n × xn

π − 2n+1 × xn+1
=

π − 2n × 2 sin (θn/2)

π − 2n+1 × 2 sin (θn+1/2)
. (10)

The RHS of Eq.(10) is simplified as

π − 2n × 2 sin (θn+1)

π − 2n+1 × 2 sin (θn+1/2)
. (11)

Taylor Series expansion for sin θ up to the third order gives:

sin θ ≈ θ − θ3

3!
. (12)

Assume that θ is sufficiently small to make the approximation of Eq.(12) valid.
Combining Eq.(11) and Eq.(12) gives:

en
en+1

≈
π − 2n+1

(
θn+1 −

θ3n+1

6

)
π − 2n+2

(
θn+1

2 − θ3n+1

48

)

Numerical analysis of chords summation algorithm for π value 281

=
π − 2n+1

(
π

2n+1 − π3

6×23n+3

)
π − 2n+2

(
π

2n+2 − π3

48×23n+3

)
=

2n+1π3/6× 23n+3

2n+1π3/24× 23n+3

= 4. (13)

This result predicts that the gradient of log10en is:

log10en+1 − log10en = log10

(
en+1

en

)
= −0.602. (14)

�

3.2. Validity of the Algorithm.

Theorem 3.2. For a criterion of the number of valid iterations, we formulate
the following:

32× α(k)δ(k)

en
< 0.25⇐⇒ n < log4

(
e1

32× α(k)δ(k)

)
. (15)

Now, we will obtain nc, the criterion of the number of valid iterations:

nc = blog4

(
e1

32× α(k)δ(k)

)
c. (16)

Proof. Let x
(k)
1 be an approximate value of

√
2 with k (∈ N) decimal places.

Let f (x) be defined as f (x) =
√

2−
√

4− x2. From Eq.(5), x
(k)
2 is calculated

as f
(
x(k)1

)
. Likewise, x

(k)
n is calculated as x

(k)
n = f

(
x(k)n−1

)
. Let δ(k) be the

rounding error of x
(k)
1 : δ(k) =

√
2−x(k)1 . For example, if k is 3, x

(3)
1 = 1.414 and

δ(3) = 2.1356 · · · × 10−4.
x2 of chords summation algorithm can be calculated as the following, using

the first order Taylor expansion:

x2 = f (x1) = f
(
x
(k)
1 + δ(k)

)
≈ f

(
x
(k)
1

)
+ f

′
(
x
(k)
1

)
δ(k). (17)

The RHS of Eq.(17) becomes

x
(k)
2 + f

′
(
x
(k)
1

)
δ(k), (18)

where derivative of f (x) is given as the following:

f
′
(x) =

x

2
√

4− x2 × f (x)
. (19)

282 Hyun Il Park, Saurav Pahadia, Christine Hwang and Chi-Ok Hwang

Similarly, for x3

x3 = f
(
x
(k)
2 + f

′
(x

(k)
1)δ(k)

)
≈ f

(
x
(k)
2

)
+ f

′
(
x
(k)
2

)
f
′
(
x
(k)
1

)
δ(k). (20)

The RHS is simplified as

x
(k)
3 + f

′
(
x
(k)
2

)
f
′
(
x
(k)
1

)
δ(k), (21)

and for n > 5,

xn ≈ x(k)n + f
′
(
x
(k)
n−1

)
f
′
(
x
(k)
n−2

)
· · · f

′
(
x
(k)
5

)
α(k)δ(k), (22)

where

α(k) = f
′
(
x
(k)
4

)
f
′
(
x
(k)
3

)
f
′
(
x
(k)
2

)
f
′
(
x
(k)
1

)
. (23)

It is safe to assume 2f
′
(xn) ≈ 1 for a sufficiently small xn because 2f

′
(x)

converges to 1 as x tends to zero. The assumption is valid for n ≥ 5. To be
specific, 2f

′
(x5) = 1.0009 ≈ 1, and further iterations of 2f

′
(xn) give the values

closer to 1.
Let π

(k)
n be the estimate π value of chords summation algorithm using x(k)n

instead of xn. Referring to Equation 8, let e
(k)
n be the absolute error defined as

e(k)n = π−π(k)
n . The numerical value of the error is e

(k)
n rather than en, which is

assumed to use the exact value of
√

2.

e(k)n − en =
(
π − π(k)

n

)
− (π − πn) = πn − π(k)

n = 2n
(
xn − x(k)n

)
. (24)

Finally, we obtain

e(k)n −en = 2n×f
′
(
x
(k)
n−1

)
f
′
(
x
(k)
n−2

)
· · · f

′
(
x
(k)
5

)
α(k)δ(k) = 32×α(k)δ(k), (25)

where α(k) is constant for a given k. For example, α(7) = 0.0882815651.
The value of error does not decrease due to the constant nature of 32×α(k)δ(k),

while en ≈ e
(
1
4

)n−1
term continues to decrease. For a criterion of the number

of valid iterations, we formulate the following:

32× α(k)δ(k)

en
< 0.25⇐⇒ n < log4

(
e1

32× α(k)δ(k)

)
. (26)

Now, we will obtain nc, the criterion of the number of valid iterations:

nc = blog4

(
e1

32× α(k)δ(k)

)
c. (27)

�

Numerical analysis of chords summation algorithm for π value 283

Figure 3. e
(k)
n Log Values of the absolute errors at nth iter-

ation are represented by dots. Solid line refers to the linear
fitting of data points up to the 20th iteration, which is marked
by dashed vertical line. Valid iterations of the algorithm are left
to the dashed line. After the 20th iteration, values of the error
starts to deviate from the linear fitting line, converging to -
12.57.

4. Numerical Results

Figure 3 shows the log plot of e
(k)
n with respect to iteration n, where

√
2, with

12 correct decimal places, is used to calculate e
(k)
n . It gives the value of π with 50

correct decimal places. It is interesting to observe an initial exponential decrease

of e
(k)
n . Data points of log10e

(k)
n lie on the straight line almost perfectly up to the

20th iteration, after which they start to deviate, eventually becoming constant.
Valid iterations of chords summation algorithm are the first 20 iterations that lie

on the line and decrease exponentially. It shows that e
(k)
n eventually converges

to a constant and stops decreasing after a certain number of iterations due to
the rounding error of x1 =

√
2.

In fact, the linear fitting in Figure 3 is applied from n = 1 to n = 20, giving
the equation of −0.600x+ 0.096. The gradient of the linear fitting line is −0.6,
which is very close to log10 (1/4) = −0.602 . . . , showing that en is quartered per
iteration. Small discrepancy between the actual gradient (-0.6) and the predicted

284 Hyun Il Park, Saurav Pahadia, Christine Hwang and Chi-Ok Hwang

Figure 4. Number of decimal places of
√

2 used.

gradient (-0.602) shows that the Taylor expansion approximation in Eq. 12 is a
valid assumption.

Also, it is observed in Figure 3 that the exponential decrease of e
(k)
n is valid

up to more iterations if more decimal places of x1 =
√

2 are used. It is noted
that a criterion for determining the number of valid iterations of the algorithm
at a given number of decimal places of x1 =

√
2 is formulated.

In Figure 4, the effect of the number of decimal places of
√

2 used in chords

summation algorithm on the number of valid iterations, for which e
(k)
n decreases

exponentially, is shown.

5. Conclusions

In this paper, by combining the ideas of Viète and Archimedes, we proposed
a chord summation algorithm for calculating the π value and analyzed the algo-
rithm.

The chords summation algorithm provides an approximation of π and has an
error that decreases exponentially. We analyzed the accuracy of the approxima-
tion and showed that the accuracy depends on the number of iterations, along
with the number of decimal digits used in the initial input value of

√
2.

As a reference, we put our python program for the algorithm in Appendix.

Appendix

Numerical analysis of chords summation algorithm for π value 285

from decimal import ∗
import math

import matp lo t l i b . pyplot as p l t

p iDec imalPlaces = 0

sqrtDec imalPlaces = 0

i t e r a t i o n s = 0

Gets maximum number o f i t e r a t i o n s v a l i d

based on cur rent va lue o f sqr tDec imalPlaces

de f getMaximumIterations () :

i = (getError (Decimal (’ 2 ’) ∗ Decimal (’ 2 ’) . s q r t ()) /

((Decimal (’ 3 2 ’) ∗ getAlpha ()

∗ getDe l ta ())))

i = math . l og (i , 4)

re turn i

Gets va lue s f o r piDecimalPlaces , sqrtDec imalPlaces , and

i t e r a t i o n s

from user Disp lays number o f maximum i t e r a t i o n s .

de f get Input () :

g l o b a l piDecimalPlaces , sqrtDec imalPlaces , i t e r a t i o n s

p iDec imalPlaces = i n t (input (

”\ nPlease ente r the number o f decimal d i g i t s f o r

PI : ”)) + 1

sqrtDec imalPlaces = i n t (input (

” Please ente r the number o f decimal d i g i t s f o r

s q r t o f 2 : ”)) + 1

maximumIterations = i n t (getMaximumIterations ())

p r i n t (”\nThe maximum number o f v a l i d i t e r a t i o n s i s ”

+ s t r (maximumIterations) + ”\n”)

i t e r a t i o n s = i n t (input (

” Please ente r the number o f i t e r a t i o n s you would l i k e

to complete : ”))

Recur s ive ly c a l c u l a t e s the chord length at the g iven

number o f i t e r a t i o n s

de f getChordLength (chordLength , i t e r a t i o n s L e f t) :

286 Hyun Il Park, Saurav Pahadia, Christine Hwang and Chi-Ok Hwang

i f (i t e r a t i o n s L e f t == 1) :

r e turn chordLength

newChordLength = Decimal (Decimal (

’ 2 ’) − Decimal (Decimal (’ 4 ’)

− chordLength ∗∗2) . s q r t ()) . s q r t ()

re turn getChordLength (newChordLength , i t e r a t i o n s L e f t

− 1)

Ca l cu l a t e s the e r r o r in the g iven approximation

o f pi , us ing math . p i

as the ” c o r r e c t ” value f o r p i

de f getError (piApproximation) :

ge tcontext () . prec = piDec imalPlaces

re turn abs (Decimal (math . p i) − piApproximation)

Ca l cu l a t e s approximation o f p i us ing the cur rent

number o f decimal p l a c e s

f o r s q r t 2 , pi , and the number o f i t e r a t i o n s

de f approximatePi () :

ge tcontext () . prec = sqrtDec imalPlaces

in i t i a lChordLength = Decimal (’ 2 ’) . s q r t ()

ge tcontext () . prec = piDec imalPlaces

piApproximation = 2∗∗ i t e r a t i o n s

∗ getChordLength (in i t ia lChordLength ,

i t e r a t i o n s)

re turn piApproximation

Used in c a l c u l a t i n g the alpha value

de f g e tDe r i va t i v e (chordLength) :

quant izedPart = Decimal (Decimal (’ 4 ’)

− chordLength ∗∗2) . s q r t ()

p l a c e s = Decimal (’ 10 ’)∗∗ (−1∗(sqrtDec imalPlaces −1))

Numerical analysis of chords summation algorithm for π value 287

quant izedPart

= quant izedPart . quant i ze (p laces , ROUNDDOWN)

pr in t (quant izedPart)

ge tcontext () . prec = sqrtDec imalPlaces

denominator = Decimal (’ 2 ’) ∗ Decimal (Decimal (’ 4 ’)

− chordLength ∗∗2) . s q r t ()

∗ Decimal (Decimal (’ 2 ’) − quant izedPart) . s q r t ()

re turn chordLength / denominator

Used to c a l c u l a t e the value f o r alpha

de f getAlpha () :

r e turn getAlphaHelper (4)

[HELPER METHOD] Used to r e c u r s i v e l y c a l c u l a t e the

value f o r alpha

de f getAlphaHelper (i t e r a t i o n s L e f t) :

in i t i a lChordLength = Decimal (’ 2 ’) . s q r t ()

i f (i t e r a t i o n s L e f t == 1) :

r e turn ge tDe r i va t i v e (in i t i a lChordLength)

re turn ge tDe r i va t i v e (getChordLength (in i t i a lChordLength

, i t e r a t i o n s L e f t))∗ getAlphaHelper (i t e r a t i o n s L e f t − 1)

Used to c a l c u l a t e va lue o f d e l t a

de f getDe l ta () :

ge tcontext () . prec = sqrtDec imalPlaces ∗ 2

accurateRoot = Decimal (’ 2 ’) . s q r t ()

approximateRoot = Decimal (’ 2 ’) . s q r t ()

p l a c e s = Decimal (’ 1 0 ’) ∗∗ (−1∗(sqrtDec imalPlaces −1))

approximateRoot = approximateRoot . quant i ze (p laces ,

ROUNDDOWN)

288 Hyun Il Park, Saurav Pahadia, Christine Hwang and Chi-Ok Hwang

d i f f e r e n c e = accurateRoot − approximateRoot

re turn d i f f e r e n c e

Used to c r e a t e e r r o r vs . i t e r a t i o n s graph

de f i t e r a t i o n s V s E r r o r () :

g l o b a l i t e r a t i o n s

o r i g i n a l I t e r a t i o n s = i t e r a t i o n s

maximumIterations = i n t (getMaximumIterations ())

+ 10

i t e r a t i o n L i s t = popu la t eL i s t (maximumIterations)

e r r o r L i s t = [0] ∗ maximumIterations

f o r currentNumIterat ions in range (1 ,

maximumIterations) :

i t e r a t i o n s = currentNumIterat ions

e r r o r L i s t [currentNumIterat ions] = math . l og (

getError (approximatePi ()) , 10)

i t e r a t i o n s = o r i g i n a l I t e r a t i o n s

p l t . f i g u r e (1)

p l t . y l a b e l (” l og (e)”)

p l t . x l a b e l (”n (i t e r a t i o n)”)

p l t . p l o t (i t e r a t i o n L i s t , e r r o r L i s t , ” ro ”)

Used to c r e a t e s q r t vs . i t e r a t i o n s graph

de f s q r t V s I t e r a t i o n s () :

g l o b a l sqr tDec imalPlaces

maximumDecimalPlaces = sqrtDec imalPlaces

dec ima lP laceL i s t = popu la t eL i s t (maximumDecimalPlaces)

i t e r a t i o n L i s t = [0] ∗ maximumDecimalPlaces

f o r currentDec imalPlace in range (2 ,

maximumDecimalPlaces +1):

sqr tDec imalPlaces = currentDec imalPlace

i t e r a t i o n L i s t [currentDecimalPlace −1]

= getMaximumIterations ()

Numerical analysis of chords summation algorithm for π value 289

p l t . f i g u r e (2)

p l t . y l a b e l (”Number o f Val id I t e r a t i o n s ”)

p l t . x l a b e l (”Number o f Decimal Places o f Root 2 Used ”)

p l t . p l o t (dec imalP laceL i s t , i t e r a t i o n L i s t , ” ro ”)

de f sqrtVsError () :

g l o b a l sqr tDec imalPlaces

maximumDecimalPlaces = sqrtDec imalPlaces

dec ima lP laceL i s t = popu la t eL i s t (maximumDecimalPlaces)

e r r o r L i s t = [0] ∗ maximumDecimalPlaces

f o r currentDec imalPlace in range (2 ,

maximumDecimalPlaces +1):

sqr tDec imalPlaces = currentDec imalPlace

e r r o r L i s t [currentDec imalPlace − 1] = math . l og (

getError (approximatePi ()) , 10)

p l t . f i g u r e (3)

p l t . y l a b e l (” l og (e)”)

p l t . x l a b e l (”Number o f Decimal Places o f Root 2 Used ”)

p l t . p l o t (dec imalP laceL i s t , e r r o r L i s t , ” ro ”)

Used to c r e a t e x−a x i s l i s t e a s i l y f o r graphs

de f popu la t eL i s t (maximum) :

l i s t = [0] ∗ maximum

f o r i in range (0 , maximum) :

l i s t [i] = i

re turn l i s t

get Input ()

i t e r a t i o n s V s E r r o r ()

s q r t V s I t e r a t i o n s ()

sqrtVsError ()

p l t . show ()

290 Hyun Il Park, Saurav Pahadia, Christine Hwang and Chi-Ok Hwang

References

1. D.H. Bailey, P.B. Borwein, and S. Plouffe, On the rapid computation of various polyloga-

rithmic constants, Math. Comput. 66 (1997), 903-913.

2. P. Beckmann, A history of π (2nd ed.), Golem Press, 1971.
3. D. Chudnovsky and G. Chudnovsky, Approximation and complex multiplication according

to Ramanujan, Proceedings of the Centenary Conference 1988, 375-472.

4. T.L. Heath, The works of archimedes, Dover, 1953.
5. E. Salamin, Computation of pi using arithmetic-geometric mean, Math. Comput. 30 (1976),

565-570.

Hyun Il Park is a graduate student at University of Cambridge, Cambridge,
UK.

Department of Chemical Engineering and Biotechnology, University of Cam-
bridge, Cambridge, UK.
e-mail: hip23@cam.ac.uk

Saurav Pahadia is an undergraduate at University of Washington at Seattle,
WA, USA.

Department of Computer Science, University of Washington at Seattle, WA,
USA.
e-mail: sauravp@uw.edu

Christine Hwang is an undergraduate at Johns Hopkins University, Baltimore,
Maryland, USA.

Department of Chemical & Biomolecular Engineering, Johns Hopkins University,
Baltimore, Maryland, USA.
e-mail: chwang14@jhu.edu

Chi-Ok Hwang received M.Sc. from Seoul National University and University
of Southern Mississippi, and Ph.D. from University of Southern Mississippi. He
is currently a professor at Gwangju Institute of Science and Technology since
2010. His research interests are Monte Carlo methods and their applications.

Division of Liberal Arts and Sciences, GIST College, Gwangju Institute of Sci-
ence and Technology, Gwangju Metropolitan City 61005, South Korea.
e-mail: chwang@gist.ac.kr

