HILBERT BASIS THEOREM FOR RINGS WITH *-NOETHERIAN SPECTRUM †

MIN JI PARK AND JUNG WOOK LIM*

ABSTRACT. Let R be a commutative ring with identity, R[X] the polynomial ring over R, * a radical operation on R and * a radical operation of finite character on R[X]. In this paper, we give Hilbert basis theorem for rings with *-Noetherian spectrum. More precisely, we show that if $(I^*R[X])^* = (IR[X])^*$ and $(I^*R[X])^* \cap R = I^*$ for all ideals I of R, then R has *-Noetherian spectrum if and only if R[X] has *-Noetherian spectrum. This is a generalization of a well-known fact that R has Noetherian spectrum if and only if R[X] has Noetherian spectrum.

AMS Mathematics Subject Classification : 13A15, 13B25, 13E99. Key words and phrases : *-Noetherian spectrum, *-finite ideal, radical operation, finite character.

1. Introduction

Throughout this paper, R always denotes a commutative ring with identity and $\mathcal{I}(R)$ stands for the set of ideals of R. For an element $I \in \mathcal{I}(R)$, set $\sqrt{I} = \{a \in R \mid a^n \in I \text{ for some integer } n \geq 1\}$. Then it is easy to see that \sqrt{I} is an ideal of R containing I. We call \sqrt{I} the radical of I. If $\sqrt{I} = I$, then I is said to be a radical ideal of R. The radical theory is one of important topics in commutative algebra. For example, it is a powerful tool to explain Hilbert nullstellensatz and the prime spectrum with the Zariski topology (cf. [1, Section 1, Exercises 15, 16, 17 and 18] and [5, Theorem 33]).

In [2], Benhissi generalized the concept of the usual radical in commutative rings. Following [2, Definition 1.1], the mapping $*: \mathcal{I}(R) \to \mathcal{I}(R)$ given by

Received December 17, 2019. Revised January 16, 2020. Accepted January 20, 2020. * Corresponding author.

 $^{^{\}dagger}$ The second author was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2017R1C1B1008085).

^{© 2020} KSCAM.

 $I \mapsto I^*$ is called a radical operation on R if it satisfies the following two conditions for all $I, J \in \mathcal{I}(R)$:

- (1) $I \subseteq I^*$ and $(I^*)^* = I^*$; and
- (2) $(I \cap J)^* = I^* \cap J^* = (IJ)^*$.

The usual radical and the trivial radical operation are simple examples of radical operations. (Recall that a mapping $*: \mathcal{I}(R) \to \mathcal{I}(R)$ defined by $I \mapsto I^* = R$ for all $I \in \mathcal{I}(R)$ is the *trivial radical operation* on R.) An element $I \in \mathcal{I}(R)$ is called a *-ideal of R if $I^* = I$. A radical operation * is said to be of finite character if for any $I \in \mathcal{I}(R)$, $I^* = \bigcup \{J^* \mid J \text{ is a finitely generated subideal of } I\}$.

Let * be a radical operation on R. We say that an element $I \in \mathcal{I}(R)$ is a *-finite ideal of R if $I^* = F^*$ for some finitely generated ideal F of R; and R has *-Noetherian spectrum if every ideal of R is *-finite. It is easy to see that I is a *-finite ideal of R if and only if I^* is a *-finite ideal of R; so R has *-Noetherian spectrum if and only if every *-ideal of R is *-finite. If * is the usual radical, then the notion of *-finite ideals (resp., *-Noetherian spectrum) is precisely the same as that of radically finite ideals (resp., Noetherian spectrum). (Recall that an ideal I of R is radically finite if $\sqrt{I} = \sqrt{F}$ for some finitely generated ideal F of R; and R has Noetherian spectrum if each ideal of R is radically finite.)

Let R[X] be the polynomial ring over R, * a radical operation on R and * a radical operation of finite character on R[X]. In [2, Theorem 4.5], the author studied Hilbert basis theorem for rings with *-Noetherian spectrum under some conditions. In fact, he showed that if $I^*R[X] = (IR[X])^*$ for all $I \in \mathcal{I}(R)$, then R has *-Noetherian spectrum if and only if R[X] has *-Noetherian spectrum. The purpose of this article is to prove Hilbert basis theorem for rings with *-Noetherian spectrum under weaker conditions. More precisely, we show that if $(I^*R[X])^* = (IR[X])^*$ and $(I^*R[X])^* \cap R = I^*$ for all $I \in \mathcal{I}(R)$, then R has *-Noetherian spectrum if and only if R[X] has *-Noetherian spectrum. Note that for an element $I \in \mathcal{I}(R)$, if $I^*R[X] = (IR[X])^*$, then $(I^*R[X])^* = (IR[X])^*$ and $(I^*R[X])^* \cap R = I^*$. Hence our result is a slight generalization of [2, Theorem 4.5].

For more on radical operations on commutative rings with identity, the readers can refer to [2], [3] and [4].

2. Main results

In this section, we give Hilbert basis theorem for rings with *-Noetherian spectrum. To do this, we need some lemmas.

Lemma 1. Let R be a commutative ring with identity, * a radical operation of finite character on R and \mathcal{F} the set of *-ideals of R which are not *-finite. If \mathcal{F} is nonempty, then \mathcal{F} contains maximal elements and any such maximal element of \mathcal{F} is a prime ideal of R.

Proof. This was shown in [2, Proposition 3.5].

Let R be a commutative ring with identity, * a radical operation on R and * a radical operation on R[X]. It was shown in [2, Lemma 4.4] that if $(IR[X])^* = I^*R[X]$ for all $I \in \mathcal{I}(R)$ and A is a *-ideal of R[X], then $A \cap R$ is a *-ideal of R. We weaken the condition and prove the same result as follows.

Lemma 2. Let R be a commutative ring with identity, * a radical operation on R and * a radical operation on R[X]. Suppose that $(I^*R[X])^* = (IR[X])^*$ for all $I \in \mathcal{I}(R)$. If A is a *-ideal of R[X], then $A \cap R$ is a *-ideal of R.

Proof. The containment $A \cap R \subseteq (A \cap R)^*$ is obvious. For the reverse containment, we note that

$$(A \cap R)^* \subseteq ((A \cap R)^* R[X])^* \cap R$$
$$= ((A \cap R)R[X])^* \cap R$$
$$\subseteq A^* \cap R$$
$$= A \cap R.$$

where the first equality follows from the assumption and the second equality comes from the fact that A is a \star -ideal of R[X]. Hence $(A \cap R)^* = A \cap R$. Thus $A \cap R$ is a *-ideal of R.

Let R be a commutative ring with identity. For an element $f \in R[X]$, c(f) stands for the ideal of R generated by the coefficients of f and is called the *content ideal* of f. Clearly, c(f) is a finitely generated ideal of R.

Lemma 3. Let R be a commutative ring with identity, I an ideal of R and \star a radical operation of finite character on R[X]. If IR[X] is a \star -finite ideal of R[X], then $(IR[X])^{\star} = (CR[X])^{\star}$ for some finitely generated subideal C of I.

Proof. Suppose that IR[X] is a \star -finite ideal of R[X]. Then $(IR[X])^{\star} = F^{\star}$ for some finitely generated ideal F of R[X]. Write $F = (f_1, \ldots, f_n)$ for some $f_1, \ldots, f_n \in R[X]$. Since \star is of finite character, $(IR[X])^{\star} = \bigcup \{J^{\star} \mid J \text{ is a finitely generated subideal of } IR[X]\}$; so for each $k \in \{1, \ldots, n\}$, there exists a finitely generated subideal J_k of IR[X] such that $f_k \in (J_k)^{\star}$. Therefore we have

$$(IR[X])^* = F^* \subseteq ((J_1)^* + \dots + (J_n)^*)^* = (J_1 + \dots + J_n)^* \subseteq (IR[X])^*,$$

where the second equality comes from [2, Lemma 1.2(iv)] and two containments follow from [2, Lemma 1.2(iii)]. Hence $(IR[X])^* = (J_1 + \cdots + J_n)^*$. Let $J = J_1 + \cdots + J_n$. Then J is a finitely generated subideal of IR[X] and $(IR[X])^* = J^*$. Write $J = (g_1, \ldots, g_m)$ for some $g_1, \ldots, g_m \in IR[X]$. Then we obtain

$$J \subseteq (c(g_1) + \dots + c(g_m))R[X] \subseteq IR[X].$$

Let $C = c(g_1) + \cdots + c(g_m)$. Then C is a finitely generated subideal of I and $(IR[X])^* = (CR[X])^*$. Thus the proof is complete.

Now, we are ready to give Hilbert basis theorem for rings with *-Noetherian spectrum which is the main result in this article.

Theorem 4. Let R be a commutative ring with identity, * a radical operation on R and * a radical operation of finite character on R[X]. Suppose that for all $I \in \mathcal{I}(R)$, $(I^*R[X])^* = (IR[X])^*$ and $(I^*R[X])^* \cap R = I^*$. Then the following statements are equivalent.

- (1) R has *-Noetherian spectrum.
- (2) R[X] has \star -Noetherian spectrum.

Proof. (1) \Rightarrow (2) Suppose to the contrary that R[X] does not have \star -Noetherian spectrum, and let $\mathcal F$ be the set of \star -ideals of R[X] which are not \star -finite. Then $\mathcal F$ is a nonempty set; so by Lemma 1, there exists a maximal element in $\mathcal F$. Let P be such a maximal element. Then P is a \star -ideal of R[X] which is not \star -finite. By Lemma 2, $P \cap R$ is a \star -ideal of R. Since R has \star -Noetherian spectrum, $P \cap R = J^*$ for some finitely generated ideal J of R. Let $M = ((P \cap R)R[X])^*$. Then by the assumption, we get

$$M = (J^*R[X])^* = (JR[X])^*.$$

Note that JR[X] is a finitely generated ideal of R[X]; so M is a \star -finite ideal of R[X]. Hence $M \subseteq P$.

Let f be an element of least degree in $P \setminus M$. Let n be the degree of f and let a be the coefficient of X^n in f. Then $n \geq 1$ and $a \notin P$. (To see this, if n = 0, then $f = a \in P \cap R \subsetneq M$. This contradicts the choice of f. Hence $n \geq 1$. Next, suppose to the contrary that $a \in P$. Then $f - aX^n \in P$. Since $\deg(f - aX^n) < \deg(f)$, $f - aX^n \in M$ by the minimality of n. Also, note that $a \in P \cap R$; so $aX^n \in (P \cap R)R[X] \subseteq M$. Therefore $f = (f - aX^n) + aX^n \in M$, which is a contradiction. Hence $a \notin P$.) Now, we note that $P \subseteq (P + (a))^*$; so by the maximality of P, $(P + (a))^*$ is a \star -finite \star -ideal of R[X]. Therefore there exists a finitely generated ideal F of R[X] such that $(P + (a))^* = F^*$. Since \star is of finite character, we may assume that F = B + (a) for some finitely generated subideal B of P. Hence we obtain

$$(P + (a))^* = (B + (a))^*.$$

Let $g \in P$. If $g \in M$, then $ag \in ((f) + M)^*$; so we next suppose that $g \in P \setminus M$. Let m be the degree of g. Then $m \geq n$ by the minimality of n; so by a routine iterative calculation, we can find suitable elements $q, r \in R[X]$ such that $a^m g = fq + r$ and $\deg(r) < \deg(f)$. Therefore $r = a^m g - fq \in P$. By the minimality of $n, r \in M$. Also, note that $(ag)^m = fqg^{m-1} + rg^{m-1} \in ((f) + M)^*$; so $ag \in \sqrt{((f) + M)^*} = ((f) + M)^*$ [2, Lemma 1.2(vi)]. Hence $aP \subseteq ((f) + M)^*$. Now, we obtain

$$P^{2} \subseteq P(P+(a))^{*}$$

$$= P(B+(a))^{*}$$

$$\subseteq (P(B+(a)))^{*}$$

$$\subseteq (B+aP)^{*}$$

$$\subseteq (B+((f)+M)^{*})^{*}$$

$$= (B + (f) + M)^*$$

= $(B + (f) + (JR[X])^*)^*$
= $(B + (f) + JR[X])^*$,

where the second inclusion follows from [2, Lemma 1.2(v)] and the second and the final equalities come from [2, Lemma 1.2(iv)].

Let $h \in P$. Then $h^2 \in (B + (f) + JR[X])^*$; so $h \in \sqrt{(B + (f) + JR[X])^*} = (B + (f) + JR[X])^*$ [2, Lemma 1.2(vi)]. Therefore $P \subseteq (B + (f) + JR[X])^*$. Note that $J \subseteq P$; so $JR[X] \subseteq P$. Hence we obtain

$$P = (B + (f) + JR[X])^*.$$

Note that B + (f) + JR[X] is a finitely generated ideal of R[X]; so P is an \star -finite ideal of R[X]. This is a contradiction to the fact that P is not a \star -finite ideal of R[X]. Thus R[X] has \star -Noetherian spectrum.

 $(2) \Rightarrow (1)$ Let I be an ideal of R. Then IR[X] is an ideal of R[X]. Since R[X] has \star -Noetherian spectrum, IR[X] is a \star -finite ideal of R[X]. Since \star is of finite character, Lemma 3 guarantees the existence of a finitely generated subideal C of I such that $(IR[X])^* = (CR[X])^*$. Therefore by the assumption, we obtain

$$I^* = (I^*R[X])^* \cap R$$

$$= (IR[X])^* \cap R$$

$$= (CR[X])^* \cap R$$

$$= (C^*R[X])^* \cap R$$

$$= C^*.$$

Hence I is a *-finite ideal of R. Thus R has *-Noetherian spectrum.

Let R be a commutative ring with identity. Then the usual radical is a radical operation of finite character on R and R[X]. Also, for any $I \in \mathcal{I}(R)$, it is easy to check that $\sqrt{\sqrt{I}R[X]} = \sqrt{IR[X]}$ and $\sqrt{\sqrt{I}R[X]} \cap R = \sqrt{I}$. Hence by Theorem 4, we recover

Corollary 5. ([6, Theorem 2.5]) Let R be a commutative ring with identity. Then R has Noetherian spectrum if and only if R[X] has Noetherian spectrum.

It is natural to ask whether *-Noetherian spectrum is preserved under the power series ring extension. We are closing this article by answering this question. In [7, Example], Ribenboim constructed an example of a commutative ring R with identity such that R has Noetherian spectrum but the power series ring $R[\![X]\!]$ does not have Noetherian spectrum. Hence the power series ring over a ring with *-Noetherian spectrum does not generally have *-Noetherian spectrum. This is the case when * is the usual radical.

Acknowledgement: We would like to thank the referee for several valuable suggestions.

References

- M.F. Atiyah and I.G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley Series in Math., Westview Press, 1969.
- A. Benhissi, Hilbert's basis theorem for *-radical ideals, J. Pure Appl. Algebra 161 (2001), 245-253.
- A. Benhissi, Extensions of radical operations to fractional ideals, Beitr. Algebra Geom. 46 (2005), 363-376.
- A. Benhissi, On radical operations, in: M. Fontana et al. (eds.) Commutative Ring Theory and Applications, Lect. Notes in Pure Appl. Math. 231, CRC Press, Taylor & Francis, Boca Raton, London, New York, pp. 51-59, 2003.
- I. Kaplansky, Commutative Rings, Washington, New Jersey: Polygonal Publishing House, 1994.
- J. Ohm and R. Pendleton, Rings with Noetherian spectrum, Duke Math. J. 35 (1968), 631-639.
- P. Ribenboim, La condition des chaines ascendantes pour les idéaux radicaux, C. R. Math. Rep. Acad. Sci. Canada 7 (1985), 277-280.

Min Ji Park received Ph.D. from Hannam University. She is currently a lecturer at Hannam University since 2019. Her research interests are number theory, p-adic functional analysis and commutative algebra.

Department of Mathematics, College of Life Science and Nano Technology, Hannam University, Daejeon 34430, Republic of Korea.

e-mail: mjpark5764@gmail.com

Jung Wook Lim received Ph.D. from Pohang University of Science and Technology. He is currently a professor at Kyungpook National University since 2013. His research interests are commutative algebra and combinatorics.

Department of Mathematics, College of Natural Sciences, Kyungpook National University, Daegu $41566,\,\mathrm{Republic}$ of Korea.

e-mail: jwlim@knu.ac.kr