DOI QR코드

DOI QR Code

Research of Semantic Considered Tree Mining Method for an Intelligent Knowledge-Services Platform

  • Paik, Juryon (Dept. of Digital Information and Statistics, Pyeongtaek University)
  • Received : 2020.04.22
  • Accepted : 2020.05.20
  • Published : 2020.05.29

Abstract

In this paper, we propose a method to derive valuable but hidden infromation from the data which is the core foundation in the 4th Industrial Revolution to pursue knowledge-based service fusion. The hyper-connected societies characterized by IoT inevitably produce big data, and with the data in order to derive optimal services for trouble situations it is first processed by discovering valuable information. A data-centric IoT platform is a platform to collect, store, manage, and integrate the data from variable devices, which is actually a type of middleware platforms. Its purpose is to provide suitable solutions for challenged problems after processing and analyzing the data, that depends on efficient and accurate algorithms performing the work of data analysis. To this end, we propose specially designed structures to store IoT data without losing the semantics and provide algorithms to discover the useful information with several definitions and proofs to show the soundness.

본 논문은 지식기반의 서비스 융합을 추구하는 4차산업혁명의 핵심 기반인 데이터로부터 유용하지만 드러나지 않는 정보들을 추출하는 방식을 제안한다. IoT로 대표되는 초연결사회에서 빅데이터의 생성은 필연적이며 그로부터 최적의 서비스를 도출하기 위해서는 가치있는 데이터를 찾아내는 것은 최우선으로 수행되어야 한다. 다양한 디바이스로부터 엄청난 양의 데이터를 수집·저장·관리하고 통합하는 데이터중심 IoT 플랫폼은 일종의 미들웨어 솔루션으로, 플랫폼의 궁극적인 목적은 빅데이터를 적시적소에 맞게 가공 및 분석수행 후 가치 있는 결과를 도출하여 최적의 답안을 제시하는 것이다. 이는 데이터를 분석하는 효율적이고 정확한 알고리즘을 필요로 한다. 이를 위해 본 논문은 분산되어 생성되는 IoT 데이터로부터 유용 정보 추출을 위해 시맨틱을 고려하여 원데이터를 저장하는 특화된 구조체를 설계하고 제안한 구조체에 기반하여 가치있는 정보를 찾아내기 위한 알고리즘을 다양한 정의와 증명을 사용하여 제시한다.

Keywords

References

  1. Jae-Ho Kim, Jae-Seok Yun, Seong-Chan Choe, and Min-U Ryu, "IoT Platform Technology Trends and Developments," Information and Communications Magazine, 30(8), 29-35, July 2013.
  2. Teik-Boon Tan and Wai_Khuen Cheng, "Software Testing Levels in Internet of Things (IoT) Architecture," 23rd International Computer Symposium, ICS 2018, Communications in Computer and Information Science 1013, pp. 385-390, Yunlin, Taiwan, December 2018. DOI: 10.1007/978-981-13-9190-3_40.
  3. Yu Liu, "A Data-centric Internet of Things Framework Based on Public Cloud," Linkoping Studies in Science and Technology Licentiate Thesis No. 1850, September 2019. DOI: 10.3384/lic.diva-159770.
  4. J. Paik, "Weighted or Non-Weighted Negative Tree Pattern Discovery from Sensor-Rich Environments," Intelligent Automation And Soft Computing, Vol. 26, No. 1, pp. 193-204, March 2020. DOI: 10.31209/2019.100000140.
  5. Y. Chi, S. Nijssen, R. R. Muntz, and J. N. Kok, "Frequent Subtree Mining - an Overview," Fundamental Informaticae, Vol. 66, No. 1-2, pp. 161-198, November 2004.
  6. M. J. Zaki, "Efficiently Mining Frequent Trees in a Forest: Algorithms and Applications," IEEE Transactions on Knowledge and Data Engineering, Vol. 17, No. 8, pp. 1021-1035, August 2005, DOI: 10.1109/TKDE.2005.125
  7. J. Paik, J. Nam, U. M. Kim, and D. Won, "Method for Extracting Valuable Common Structures from Heterogeneous Rooted and Labeled Tree Data," J. of Information Science and Engineering, Vol. 30, No. 3, pp. 787-817, March 2014.
  8. A. Inokuchi, T. Washio, and H. Motoda, "An Apriori-based Algorithm for Mining Frequent Substructures from Graph Data," Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery, LNCS, Vol. 1920, pp. 13-23, Lyon, France, September 2000, DOI: 10.1007/3-540-45372-5_2
  9. M. Kuramochi and G. Karypis, "Frequent Subgraph Discovery," Proceedings of IEEE International Conference on Data Mining, pp. 313-320, San Jose, California, 29 Nov.-2 December 2001, DOI: 10.1109/ICDM.2001.989534.
  10. Harmanjit Singh and Richa Sharma, "Role of Adjacency Matrix & Adjacency List in Graph Theory," International Journal of Computers & Technology , Vol. 3, No. 1, pp. 1021-1035, August 2012, DOI: 10.24297/ijct.v3i1c.2775
  11. Fengying Li, Enyi Yang, Anqiao Ma, Rongsheng Dong, "Optimal Representation of Large-Scale Graph Data Based on Grid Clustering and K2-Tree," Mathematical Problems in Engineering, Vol. 2020, Article ID 2354875, 8 pages, January 2020, doi.org/10.1155/2020/2354875.
  12. T. Miyahara, T. Suzuki, T. Shoudai, T. Uchida, K. Takahashi, and H. Ueda, "Discovery of Frequent Tag Tree Patterns in Semistructured Web Documents," Proceedings of the 6th Pacific-Asia Conference of Advances in Knowledge Discovery and Data Mining, LNCS, Vol. 2336, pp. 341-355, Taipei, Taiwan, May 2002, DOI: 10.1007/3-540-47887-6_35
  13. Kunihiko Sadakane and Gonzalo Navarro, "Fully-Functional Succinct Trees," Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, pp. 134-149, Austin, Texas, USA, January 2010, DOI: 10.1137/1.9781611973075.13
  14. Reuven Cohen, Pierre Fraigniaud, David Ilcinkas, Amos Korman, and David Peleg, "Labeling Schemes for Tree Representation," 7th International Workshop on Distributed Computing IWDC 2005, LNCS, Vol. 3741, pp. 13-24, Kharagpur, India, December 2005, DOI: doi.org/10.1007/11603771_2
  15. J. Paik, J. Nam, U. M. Kim, and D. Won, "Fast Extraction of Maximal Frequent Subtrees Using Bits Representation," J. of Information Science and Engineering, Vol. 25, No. 2, pp. 435-464, March 2009, DOI: 10.1.1.423.292.