DOI QR코드

DOI QR Code

A Study on the Outlet Blockage Determination Technology of Conveyor System using Deep Learning

  • Jeong, Eui-Han (Postech Institute of Artificial Intelligence, POSTECH) ;
  • Suh, Young-Joo (Dept. of Computer Science and Engineering, POSTECH) ;
  • Kim, Dong-Ju (Postech Institute of Artificial Intelligence, POSTECH)
  • Received : 2020.01.06
  • Accepted : 2020.04.24
  • Published : 2020.05.29

Abstract

This study proposes a technique for the determination of outlet blockage using deep learning in a conveyor system. The proposed method aims to apply the best model to the actual process, where we train various CNN models for the determination of outlet blockage using images collected by CCTV in an industrial scene. We used the well-known CNN model such as VGGNet, ResNet, DenseNet and NASNet, and used 18,000 images collected by CCTV for model training and performance evaluation. As a experiment result with various models, VGGNet showed the best performance with 99.03% accuracy and 29.05ms processing time, and we confirmed that VGGNet is suitable for the determination of outlet blockage.

본 연구는 컨베이어 시스템에서 딥러닝을 이용한 배출구 막힘 판단 기술에 대하여 제안한다. 제안 방법은 산업 현장의 CCTV에서 수집한 영상을 이용하여 배출구 막힘 판단을 위한 다양한 CNN 모델들을 학습시키고, 성능이 가장 좋은 모델을 사용하여 실제 공정에 적용하는 것을 목적으로 한다. CNN 모델로는 잘 알려진 VGGNet, ResNet, DenseNet, 그리고 NASNet을 사용하였으며, 모델 학습과 성능 테스트를 위하여 CCTV에서 수집한 18,000장의 영상을 이용하였다. 다양한 모델에 대한 실험 결과, VGGNet은 99.89%의 정확도와 29.05ms의 처리 시간으로 가장 좋은 성능을 보였으며, 이로부터 배출구 막힘 판단 문제에 VGGNet이 가장 적합함을 확인하였다.

Keywords

References

  1. Hyundai Steel Co., Ltd., "DEVICE FOR PREVENTING CHUTE CLOGGING," 10-1968857, Apr 08, 2019.
  2. POSCO Co., Ltd., "Device for preventing chute clogging," 10-1635986, Jun 28, 2016.
  3. POSCO Co., Ltd., "Apparatus and method for preventing a bin chute from being clogging," 10-1543590, Aug 05, 2015.
  4. POSCO Co., Ltd., "ANTI-CLOG CHUTE," 10-1289150, Jul 17, 2013.
  5. POSCO Co., Ltd., "APPARATUS FOR DETECTING CLOGGI NG OF COKE BIN CHUTE," 10-1289420, Jul 18, 2013.
  6. CS231n Convolutional Neural Networks for Visual Recognition, "CS231n Convolutional Neural Networks for Visual Recognition", http://cs231n.github.io/convolutional-networks/
  7. Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, L. D. Jackel, "Backpropagation Applied to Handwritten Zip Code Recognition," NEURAL COMPUTATION, Vol. 1, No. 4, pp. 541-551, Dec 1989. DOI: 10.1162/neco.1989.1.4.541
  8. Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, "Gradient-based learning applied to document recognition," PROCEEDINGS OF THE IEEE, Vol. 86, No. 11, pp. 2278-2324, Nov 1998. DOI: 10.1109/5.726791
  9. Mathworks Korea, "Convolutional Neural Network," http://blog.naver.com/PostView.nhn?blogId=matlablove&logNo=221611175120&parentCategoryNo=29&categoryNo=&viewDate=&isShowPopularPosts=false&from=postView
  10. K. Simonyan, A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," International Conference on Learning Representations (ICLR) 2015, Sep 2014. CoRR, abs / 1409.1556
  11. B. B. Shi, R. Hou, M. A. Mazurowski, L. J. Grimm, Y. H. Ren, J. R. Marks, L. M. King, C. C. Maley, E. S. Hwang, J. Y. Lo, "Learning better deep features for the prediction of occult invasive disease in ductal carcinoma in situ through transfer learning," MEDICAL IMAGING 2018: COMPUTER-AIDED DIAGNOSIS, Vol. 10575, Houston, USA, Feb 2018. DOI: 10.1117/12.2293594
  12. WikiDocs, "Gradinet Vanishing and Exploding," https://wikidocs.net/61375
  13. K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun, "Deep Residual Learning for Image Recognition," 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), pp. 770-778, Seattle, USA, Jun 2016. DOI: 10.1109 / CVPR.2016.90
  14. B. Kazimi, F. Thiemann, K. Malek, M. Sester, K. Khoshelham, "Deep Learning for Archaeological Object Detection in Airborne Laser Scanning Data," 2nd Workshop On Computing Techniques For Spatio-Temporal Data in Archaeology And Cultural Heritage (COARCH 2018), Vol. 2230, pp. 21-35, Melbourne, AU, Aug 2018. DOI: 10.4230/LIPIcs.COARCH.2018
  15. G. Huang, Z. Liu, L. van der Maaten, K. Q. Weinberger, "Densely Connected Convolutional Networks," 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), pp. 2261-2269, Honolulu, USA, Nov 2016. DOI: 10.1109 / CVPR.2017.243
  16. G. Huang, S. Liu, L. van der Maaten, K. Q. Weinberger, "CondenseNet: An Efficient DenseNet Using Learned Group Convolutions," 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2018), pp. 2752-2761, Salt Lake City, USA, Jun 2018. DOI: 10.1109/CVPR.2018.00291
  17. B. Zoph, Q. V. Le, "Neural Architecture Search with Reinforcement Learning," International Conference on Learning Representations (ICLR) 2017, Jul 2017. CoRR, abs / 1611.01578
  18. B. Zoph, V. Vasudevan, J. Shlens, Q. V. Le, "Learning Transferable Architectures for Scalable Image Recognition," 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), pp. 8697-8710, Salt Lake City, USA, Jun 2018. DOI: 10.1109/CVPR.2018.00907
  19. Keras Documentation, "Models for image classification with weights trained on ImageNet," https://keras.io/applications/
  20. S. Raschka, "Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning," Nov 2018. arXiv: 1811.12808
  21. K. K. Dobbin, R. M. Simon, "Optimally splitting cases for training and testing high dimensional classifiers," BMC Medical Genomics, vol. 4, no. 31, Apr 2011. DOI: 10.1186/1755-8794-4-31