References
- Aktas, G., Tanrikulu, A.K. and Baran, T. (2014), "Computer-aided mold design algorithm for precast concrete elements", ACI Mat. J., 111(1), 77-87.
- Aktas, G. and Karasin, A. (2014), "Experimental confirmation for the validity of Ritz method in structural dynamic analysis", J. Theor. App. Mech., 52(4), 981-993. https://doi.org/10.15632/jtam-pl.52.4.981
- Aktas, G. (2016), "Investigation of fresh concrete behavior under vibration using mass-spring model", Struct. Eng. Mech, 57(3),425-439. http://dx.doi.org/10.12989/sem.2016.57.3.425.
- Aktas, G. and Ozerdem, M.S. (2016), "Prediction of behavior of fresh concrete exposed to vibration using artificial neural networks and regression model", Struct. Eng. Mech, 60(4),655-665. https://doi.org/10.12989/sem.2016.60.4.655.
- Alexsandridis, A. and Gardner, N.J. (1981), "Mechanical behaviour of fresh concrete", Cement Concrete Res., 11(3), 323-339. https://doi.org/10.1016/0008-8846(81)90105-8.
- Ashteyat, A.M. and Ismeik, M. (2018), "Predicting residual compressive strength of self-compacted concrete under various temperatures and relative humidity conditions by artificial neural networks", Comp. Concrete, 21(1), 47-54. https://doi.org/10.12989/cac.2018.21.1.047.
- Beale, M.H., Hagan, M.T. and Demuth, H.B. (2014), Neural Network Toolbox User's Guide, The MathWorks, Inc., Natick, MA, USA.
- Cascardi, A., Micelli, F. and Aiello, M.A. (2017), "An Artificial Neural Networks model for the prediction of the compressive strength of FRP-confined concrete circular columns", Eng. Struct., 140, 199-208. https://doi.org/10.1016/j.engstruct.2017.02.047.
- Chithra, S., Senthil, S.R.R., Kumar, K., Chinnaraju, F. and Ashmita, A. (2016), "A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks", Const. Build. Mat.,114, 528-553. https://doi.org/10.1016/j.conbuildmat.2016.03.214.
- Demir, A. (2015), "Prediction of Hybrid fibre-added concrete strength using artificial neural networks", Comp. Concrete, 15(4), 503-514. http://dx.doi.org/10.12989/cac.2015.15.4.503.
- Duan, Z.H., Kou, S.C. and Poon, C.S. (2013), "Prediction of compressive strength of recycled aggregate concrete using artificial neural networks", Const. Build. Mat.40, 1200-1206. https://doi.org/10.1016/j.conbuildmat.2012.04.063.
- Erdem, H. (2010), "Prediction of the moment capacity of reinforced concrete slabs in fire using artificial neural networks", Adv. Eng. Soft., 41, 270-276. https://doi.org/10.1016/j.advengsoft.2009.07.006.
- Kao, C.S. and Yeh, I.C. (2014), "Optimal design of plane frame structures using artificial neural networks and ratio variables", Struct. Eng. Mech, 52(4), 739-753. https://doi.org/10.12989/sem.2014.52.4.739.
- Khademi, F. and Jamal, S.M. (2016), "Predicting the 28 days compressive strength of concrete using artificial neural network", i-Manager's J. Civ. Eng. 6(2), 1.
- Khademi, F., Jamal, S.M., Deshpande, N. and Londhe, S. (2016), "Predicting strength of recycled aggregate concrete using Artificial Neural Network, Adaptive Neuro-Fuzzy Inference System and Multiple Linear Regression", Inter. J. Sust.Built Env.,5, 355-369. https://doi.org/10.1016/j.ijsbe.2016.09.003.
- Larrard, F.D., Hu, C., Sedran. T., Szitkar. J.C., Jolt. M., Claux. F. and Derkx, F. (1997), "New Rheometer for Soft-to-Fluid Fresh Concrete", ACI Mat. J., 94(3), 234-243. https://doi.org/10.1007/BF02485970.
- Onat, O. and Yon, B. (2019), "Elimination of a measurement problem: A robust prediction model for missing eigenvector value to assess earthquake induced out-of-plane failure of infill wall", Measurement, 144, 88-104. https://doi.org/10.1016/j.measurement.2019.05.001.
- Tattersall, G.H. and Baker, P.H. (1988), "Effect of Vibration on the Rheological Properties of Fresh Concrete", Mag. Concrete Res., 40(143), 79-89. https://doi.org/10.1680/macr.1988.40.143.79
- Thomas, J. and Harilal, B. (2014), "Fresh and hardened properties of concrete containing cold bonded aggregates", Adv. Concrete Const., 2(2), 77-89. https://doi.org/10.12989/acc.2014.2.2.077.
- U.S. Department of Transportation (2003), "Poission's Ratio and Temperature Gradient Adjustments", HIPERPAV Validation Model Summary, Federal Highway Administration Research, Technology, and Development Turner-Fairbank Highway Research Center; Virginia, USA. 1-4.
- Wenzel, D. (1986), "Compaction of Concrete-Principles, Practice, Special Problems", Beton. Fert. Tech., 52(3), 153-158.
- Zhou, Q., Wang, F. and Zhu, F. (2016), "Estimation of compressive strength of hollow concrete masonry prisms using artificial neural network sand adaptive neuro-fuzzy inference systems", Const. Build. Mat.,125, 417-426. https://doi.org/10.1016/j.conbuildmat.2016.08.064.