참고문헌
- Babuska, I. and Rheinboldt, C. (1987), "A-posteriori error estimates for the finite element method", Int. J. Numer. Methods Engrg., 12, 1597-1615. https://doi.org/10.1002/nme.1620121010.
- Bespalov, A. and Rocchi, L. (2018), "Efficient adaptive algorithms for elliptic PDEs with random data", SIAM/ASA J. Uncertain. Quantif., 6, 243-272. https://doi.org/10.1137/17M1139928.
- Boroomand. B. and Zienkiewicz, O.C. (1997), "Recovery by equilibrium: In patches (REP)", J. Num. Meth. Eng., 40, 137-164. https://doi.org/10.1002/(SICI)1097-0207(19970115)40:1%3C137::AID-NME57%3E3.0.CO;2-5.
- Deb, M.K., Babuska, I.M. and Oden, J.T. (2001), "Solution of stochastic partial differential equations using Galerkin finite element techniques", Comput. Methods Appl. Mech. Eng,. 190, 6359-6372. https://doi.org/10.1016/S0045-7825(01)00237-7.
- Eigel, M., Gittelson, C.J., Schwab, C. and Zander, E. (2014), "Adaptive stochastic Galerkin FEM", Comput. Methods Appl. Mech. Eng., 270, 247-269. https://doi.org/10.1016/j.cma.2013.11.015.
- Erdogan, F. and Sih G.C. (1963), "On the extension of plates under plane loading and transverse shear", J. Basic Engng., 4, 519-527. https://doi.org/10.1115/1.3656897.
- Gonzalez-Estrada O.A., Nadal E., Rodenas J.J., Kerfriden P., Bordas S.P.A. and Fuenmayor F.J. (2013), "Mesh adaptivity driven by goal-oriented locally equilibrated superconvergent patch recovery", Comput. Mech., 53, 957-976. https://doi.org/10.1007/s00466-013-0942-8.
- Gratsch, T. and Bathe, K.J. (2005), "A posteriori error estimation techniques in practical finite element analysis", Comput. Struct., 83, 235-265. https://doi.org/10.1016/j.compstruc.2004.08.011.
- Guignard, D., Nobile, F. and Picasso, M. (2016), "A posteriori error estimation for elliptic partial differential equations with small uncertainties", Numer. Methods Partial Differential Equations, 32, 175-212. https://doi.org/10.1002/num.21991.
- Kumar, M., Kvamsdal, T. and Johannessen, K.A. (2017), "Superconvergent patch recovery and a posteriori error estimation technique in adaptive isogeometric analysis", Comput. Methods Appl. Mech. Eng., 316, 1086-1156. https://doi.org/10.1016/j.cma.2016.11.014.
- Lee, D.K., Park, S.S. and Shin, S.M. (2008), "Non-stochastic interval arithmetic-based finite element analysis for structural uncertainty response estimate", Struct. Eng. Mech., 29, 469-488. https://doi.org/10.12989/sem.2008.29.5.469.
- Lee, D.K and Shin, S.M. (2008), "Non-stochastic interval factor method-based FEA for structural stress responses with uncertainty", Struct. Eng. Mech., 62, 703-708. https://doi.org/10.12989/sem.2017.62.6.703.
- Li, C.C. and Der Kiureghian, A. (1993), "Optimal discretization of random fields", J. Engrg. Mech., 119(6) 1136-1154. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:6(1136).
- Mathelin, L. and Le Maitre, O. (2007), "Dual-based a posteriori error estimate for stochastic finite element methods", Commun. Appl. Math. Comput. Sci., 2, 83-115. http://dx.doi.org/10.2140/camcos.2007.2.83.
- Moslemi, H. and Khoei, A.R. (2009), "3D adaptive finite element modeling of non-planar curved crack growth using the weighted superconvergent patch recovery method", Eng. Fracture Mech., 76, 1703-1728. https://doi.org/10.1016/j.engfracmech.2009.03.013.
- Moslemi, H. and Khoei, A.R. (2010), "3D Modeling of damage growth and crack initiation using adaptive finite element technique", Scientia Iranica, 17, 372-386.
- Moslemi, H. and Tavakkoli A. (2018), "A Statistical Approach for Error Estimation In Adaptive Finite Element Method", J. Comput. Methods Eng. Sci. Mech., 19, 440-450. https://doi.org/10.1080/15502287.2018.1558424.
- Ozakca, M. (2003), "Comparison of error estimation methods and adaptivity for plane stress/strain problems", Struct. Eng. Mech., 15, 579-608. https://doi.org/10.12989/sem.2003.15.5.579
- Richardson, L. (1910), "The approximate arithmetical solution by finite differences of physical problems", Transactions Royal Soc. London, 210, 307-357. https://doi.org/10.1098/rsta.1911.0009.
- Rodenas, J.J., Gonzalez-Estrada, O.A., Tarancon, J.E. and Fuenmayor, F.J. (2008), "A recovery-type error estimator for the extended finite element method based on singular+smooth stress field splitting", J. Numerical Methods Eng., 76, 545-571. https://doi.org/10.1002/nme.2313.
- Zienkiewicz, O.C. (2006), "The background of error estimation and adaptivity in finite element computation", Comput. Methods Appl. Mech. Eng., 195, 207-213. https://doi.org/10.1016/j.cma.2004.07.053.
- Zienkiewicz, O.C. and Zhu, J.Z. (1987), "A simple error estimator and adaptive procedure for practical engineering analysis", J. Num. Meth. Eng., 24, 337-357. https://doi.org/10.1002/nme.1620240206.
- Zienkiewicz, O.C. and Zhu, J.Z. (1992), "The super convergent patch recovery (SPR) and adaptive finite element refinement", Comp. Meth. Appl. Mech. Eng., 101, 207-224. https://doi.org/10.1016/0045-7825(92)90023-D.