DOI QR코드

DOI QR Code

Shear strength prediction for SFRC and UHPC beams using a Bayesian approach

  • Cho, Hae-Chang (Centre for Infrastructure Engineering, Western Sydney University) ;
  • Park, Min-Kook (Department of Civil and Environmental Engineering, Nazarbayev University) ;
  • Hwang, Jin-Ha (Dpartment of Architectural Engineering, University of Seoul) ;
  • Kang, Won-Hee (Centre for Infrastructure Engineering, Western Sydney University) ;
  • Kim, Kang Su (Dpartment of Architectural Engineering, University of Seoul)
  • 투고 : 2019.03.13
  • 심사 : 2019.12.26
  • 발행 : 2020.05.25

초록

This study proposes prediction models for the shear strength of steel fiber reinforced concrete (SFRC) and ultra-high-performance fiber reinforced concrete (UHPC) beams using a Bayesian parameter estimation approach and a collected experimental database. Previous researchers had already proposed shear strength prediction models for SFRC and UHPC beams, but their performances were limited in terms of their prediction accuracies and the applicability to UHPC beams. Therefore, this study adopted a statistical approach based on a collected database to develop prediction models. In the database, 89 and 37 experimental data for SFRC and UHPC beams without stirrups were collected, respectively, and the proposed equations were developed using the Bayesian parameter estimation approach. The proposed models have a simplified form with important parameters, and in comparison to the existing prediction models, provide unbiased high prediction accuracy.

키워드

과제정보

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2018R1A4A1025953)

참고문헌

  1. Ashour, S.A., Hasanain, G.S. and Wafa, F.F. (1992), "Shear behavior of high-strength fiber reinforced concrete beams", ACI Struct. J., 89(2), 176-184.
  2. Association of Civil Engineering-French Authorities of Civil Engineering Structure Design, and Control (AFGC-Setra) (2013), Ultra high performance fibre-reinforced concretes, Interim recommendations, Bagneux, France.
  3. A1-Ta'an, S.A. and A1-Feel, J.R. (1990), "Evaluation of shear strength of fibre-reinforced concrete beams", Cement Concrete Compos., 12, 87-94. http://dx.doi.org/10.1016/0958-9465(90)90045-Y.
  4. Baby, F., Graybeal, B.A., Marchand, P., and Toutlemonde, F. (2013), "Identification of uhpfrc tensile behaviour: methodology based on bending tests", UHPCFRC 2013-International Symposium on Ultra-High Performance Fibre-Reinforced Concrete, MARSEILLE, France, 703-731.
  5. Barakat, S., Al-Toubat S., Leblouba M. and Burai E.A. (2019), "Behavioral trends of shear strengthened reinforced concrete beams with externally bonded fiber-reinforced polymer", Struct. Eng. Mech., 69(5), 579-589. http://dx.doi.org/10.12989/sem.2019.69.5.579.
  6. Batson, G., Jenkins, E., and Spatney, R. (1972), "Steel fibers as shear reinforcement in beams", ACI J., 69(10), 640-644.
  7. Box, G.E.P. and Tiao, G.C. (1992), Bayesian Inference in Statistical Analysis, Reading, MA, Addison-Wesley, U.S.A.
  8. Cho, H.C., Park, M.K., Kim, M.S., Han, S.J., and Kim, K.S. (2018), "Shear strength estimation of uhpc flexural members based on adaptive neuro-fuzzy inference system", Arch. Institute Korea, 20(1), 165-171.
  9. Dinh. H.H. (2009), Shear Behavior of Steel Fiber Reinforced Concrete Beams without Stirrup Reinforcement, Ph.D. Dissertation, University of Michigan.
  10. Gardoni, P. (2002), Probabilistic Models and Fragility Estimates for Structural Components and Systems, Ph.D. Dissertation, University of California, Berkeley, CA.
  11. Gardoni, P., Mosalam, K.M., and Kiureghian, A.D. (2003), "Probabilistic seismic demand models and fragility estimates for RC bridges", J. Earthq. Eng., 7(S1), 79-106. http://dx.doi.org/10.1142/S1363246903001024
  12. Graybeal, B. (2011), Ultra-High Performance Concrete (FHWA-HRT-11-038), Federal Highway Administration, Washington, D.C., U.S.A.
  13. Hwang, J.H., Lee, D.H., Ju, H., Kim, K.S., Seo, S.Y. and Kang, J.W. (2013a), "Shear behavior models of steel fiber reinforced concrete beams modifying softened truss model approaches", Materials, 6(10), 4847-4867. http://dx.doi.org/10.3390/ma6104847.
  14. Hwang, J.H., Lee, D.H., Kim, K.S., Ju, H.J. and Seo, S.Y. (2013b), "Evaluation of shear performance of steel fibre reinforced concrete beams using a modified smeared-truss model", Mag. Concrete Res., 65(5), 283-296. http://dx.dio.org/10.1680/macr.12.00009
  15. JSCE (2008), Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC), Concrete Engineering Series, Concrete Committee.
  16. Jung, S.M. and Kim K.S. (2008), "Knowledge-based prediction of shear strength of concrete beams without shear reinforcement", Eng. Struct., 30, 1515-1525. http://doi.org/10.1016/j.engstruct.2007.10.008.
  17. Karl, K.W., Kim, K.S., Lee, D.H., Hwang, J.H., Ju, H. and Seo, S.Y. (2010), "An experimental study on shear strength of high-strength reinforced concrete beams with steel fibers", Arch. Institute Korea, 26(10), 19-29.
  18. Kaya, M. and Yaman, C. (2018), "Modelling the reinforced concrete beams strengthened with GFRP against shear crack", Comput. Concrete, 21(2), 127-137. http://dx.doi.org/10.12989/cac.2018.21.2.127.
  19. Keskin, R.S.O. (2017), "Predicting shear strength of SFRC slender beams without stirrups using an ANN model", Struct. Eng. Mech., 61(5), 605-615. http://dx.doi.org/10.12989/sem.2017.61.5.605.
  20. Khuntia, M., Stojadinovic, B. and Goel, S.C. (1999), "Shear strength of normal and high-strength fiber reinforced concrete beams without stirrups", ACI Struct. J., 96(2), 282-290.
  21. Li, V., Ward, R. and Hamza, A.M. (1992), "Steel and synthetic fibers as shear reinforcement", ACI Mater. J., 89(5), 499-508.
  22. Lim, T.Y., Paramsivam, P. and Lee, S.L. (1987), "Shear and moment capacity of reinforced steel-fiber-concrete beams", Mag. Concrete Res., 39(140), 148-160. http://dx.doi.org/10.1680/macr.1987.39.140.148.
  23. Lim, W. and Hong, S. (2016), "Shear tests for ultra-high performance fiber reinforced concrete (UHPFRC) with shear reinforcement", J. Concrete Struct. Mater., 10(2), 177-188. http://dx.doi.org/10.1007/s40069-016-0145-8
  24. Mansur, M.A., Ong, K.C.G. and Paramasivam, P. (1986), "Shear strength of fibrous concrete beams without stirrups", J. Struct. Eng., ASCE, 112(9), 2066-2079. http://dx.doi.org/10.1061/(ASCE)0733-9445(1986)112:9(2066).
  25. Meszoly, M. and Randl, N. (2018), "Shear behavior of fiber-reinforced ultra-high performance concrete beams", Eng. Struct., 168, 119-127. http://dx.doi.org/10.1016/j.engstruct.2018.04.075
  26. Naaman, A.E. and Reinhardt, H.W. (2003), "High performance fiber reinforced cement composites-HPFRCC4: International RILEM Workshop", Mater. Struct., 36(10), 710-712. https://doi.org/10.1007/BF02479507
  27. Narayanan, R. and Darwish, I.Y.S. (1987), "Use of steel fibers as shear reinforcement", ACI Struct. J., 84(3), 216-227.
  28. Oh, Y.H. and Kim, J.H. (2008), "Estimation of flexural and shear strength for steel fiber reinforced flexural members without shear reinforcements", Korea Concrete Institute, 20(2), 257-267. https://doi.org/10.4334/JKCI.2008.20.2.257
  29. Okamura, H. and Higai, T. (1980), "Proposed design equation for shear strength of RC beams without web reinforcement", Proc. Japan Soc. Civil Eng., 300, 131-41. https://doi.org/10.2208/jscej1969.1980.300_131
  30. Pourbaba, M., Joghataie, A. and Mirmiran, A. (2018), "Shear behavior of ultra-high performance concrete", Construct. Building Mater., 183, 554-564. http://dx.doi.org/10.1016/j.conbuildmat.2018.06.117
  31. Prisco, M.D., Plizzari, G. and Vandewalle, L. (2009), "Fibre reinforced concrete: new design perspectives", Mater. Struct., 42(9), 1261-1281. http://dx.doi.org/10.1617/s11527-009-9529-4
  32. Qi, J., Wang, J. and Ma, Z.J. (2016), "Flexural response of hss-uhpfrc beams based on a mesoscale constitutive model: experiment and theory", ACI Struct. J., 94(3), 851-864.
  33. Qissab, M.A. and Salman, M.M. (2018), "Shear strength of non-prismatic steel fiber reinforced concrete beams without stirrups", Struct. Eng. Mech., 67(4), 347-358. http://doi.org/10.12989/sem.2018.67.4.347.
  34. Rahdar, H.A. and Ghalehnovi, M. (2016), "Post-cracking behavior of UHPC on the concrete members reinforced by steel rebar", Comput. Concrete, 18(1), 139-154. http://doi.org/10.12989/cac.2016.18.1.139
  35. Rahman, S., Molyneaux, T. and Patnaikuni, I. (2005), "Ultra high performance concrete: recent applications and research", Australian J. Civil Eng., 2(1), 13-20. https://doi.org/10.1080/14488353.2005.11463913
  36. Sharma, A.K. (1986), "Shear strength of steel fiber reinforced concrete beams", J. Proceedings, 83(4), 624-628.
  37. Sohail, M.G., Wang, B., Jain, A., Kahraman, R., Ozerkan, N.G., Gencturk, B., Dawood, M. and Belarbi, A. (2018), "Advancements in concrete mix designs: high-performance and ultrahigh-performance concretes from 1970 to 2016", J. Mater. Civil Eng., 30(3), 04017310. http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0002144.
  38. Song, J.h., Kang, W.H., Kim, K.S. and Jung, S.M. (2010), "Probabilistic shear strength models for reinforced concrete beams without shear reinforcement", Struct. Eng. Mech., 11(1), 15-38. http://dx.doi.org/10.12989/sem.2010.34.1.015.
  39. Swamy, R.N. and Bahia, H.M. (1985), "The effectiveness of steel fibers as shear reinforcement", ACI Concrete Int., 7(3), 35-40.
  40. Swamy, R.N., Jones, R. and Chiam, A.T.P. (1993), "Influence of steel fibers on the shear resistance of lightweight concrete i-beams". ACI Structural J., 90(1), 103-114.
  41. Telleen, K., Noshiravani, T., Galrito, R. and BrUhwiler, E. (2006), "Experimental investigation into the shear resistance of a reinforced UHPFRC web element", 8th fib PhD Symposium, 22(5), 31-38. Lyngby, Denmark.
  42. Vora, T.P. and Shah, B.J. (2016), "Experimental investigation on shear capacity of RC beams with GFRP rebar & stirrups", Steel Compos. Struct., 21(6), 1265-1285. http://dx.doi.org/10.12989/scs.2016.21.6.1265.
  43. Wang, Y.B., Liew, J., Lee, S.C. and Xiong, D. (2016), "Experimental study of ultra-high-strength concrete under triaxial compression", ACI Mater. J., 113(1), 105-112.
  44. Wight, J.K. and MacGregor, J.G. (2012), Reinforced Concrete: Mechanics and Design. Pearson Education, Inc., Upper Saddle River, New Jersey, U.S.A.
  45. Wille, K., El-Tawil, S. and Naaman, A.E. (2014), "Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading", Cement Concrete Compos., 48, 53-66. http://dx.doi.org/10.1016/j.cemconcomp.2013.12.015.
  46. Wille, K., Naaman, A.E., El-Tawil, S. and Parra-Montesinos, G. J. (2012), "Ultra-high performance concrete and fiber reinforced concrete: achieving strength and ductility without heat curing", Mater. Struct., 45(3), 309-324. http://dx.doi.org/10.1617/s11527-011-9767-0.
  47. Zsutty, T.C. (1971), "Shear strength prediction for separate categories of simple beams tests", ACI J., 68, 138-143.