DOI QR코드

DOI QR Code

Combinatorial Methylerythritol Phosphate Pathway Engineering and Process Optimization for Increased Menaquinone-7 Synthesis in Bacillus subtilis

  • Chen, Taichi (Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University) ;
  • Xia, Hongzhi (Richen Bioengineering Co., Ltd.) ;
  • Cui, Shixiu (Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University) ;
  • Lv, Xueqin (Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University) ;
  • Li, Xueliang (Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University) ;
  • Liu, Yanfeng (Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University) ;
  • Li, Jianghua (Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University) ;
  • Du, Guocheng (Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University) ;
  • Liu, Long (Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University)
  • Received : 2019.12.05
  • Accepted : 2020.02.17
  • Published : 2020.05.28

Abstract

Vitamin K2 (menaquinone) is an essential vitamin existing in the daily diet, and menaquinone-7 (MK-7) is an important form of it. In a recent work, we engineered the synthesis modules of MK-7 in Bacillus subtilis, and the strain BS20 could produce 360 mg/l MK-7 in shake flasks, while the methylerythritol phosphate (MEP) pathway, which provides the precursor isopentenyl diphosphate for MK-7 synthesis, was not engineered. In this study, we overexpressed five genes of the MEP pathway in BS20 and finally obtained a strain (BS20DFHG) with MK-7 titer of 415 mg/l in shake flasks. Next, we optimized the fermentation process parameters (initial pH, temperature and aeration) in an 8-unit parallel bioreactor system consisting of 300-ml glass vessels. Based on this, we scaled up the MK-7 production by the strain BS20DFHG in a 50-l bioreactor, and the highest MK-7 titer reached 242 mg/l. Here, we show that the engineered strain BS20DFHG may be used for the industrial production of MK-7 in the future.

Keywords

References

  1. Walther B, Karl JP, Booth SL, Boyaval P. 2013. Menaquinones, bacteria, and the food supply: the relevance of dairy and fermented food products to vitamin K requirements. Adv. Nutr. 4: 463-473. https://doi.org/10.3945/an.113.003855
  2. Mahdinia E, Demirci A, Berenjian A. 2017. Optimization of Bacillus subtilis natto growth parameters in glycerol-based medium for vitamin K (menaquinone-7) production in biofilm reactors. Bioprocess Biosyst. Eng. 41: 195-204. https://doi.org/10.1007/s00449-017-1857-0
  3. Scheiber D, Veulemans V, Horn P, Chatrou ML, Potthoff SA, Kelm M, et al. 2015. High-dose menaquinone-7 supplementation reduces cardiovascular calcification in a murine model of extraosseous calcification. Nutrients 7: 6991-7011. https://doi.org/10.3390/nu7085318
  4. El Asmar MS, Naoum JJ, Arbid EJ. 2014. Vitamin k dependent proteins and the role of vitamin K2 in the modulation of vascular calcification: a review. Oman. Med. J. 29: 172-177. https://doi.org/10.5001/omj.2014.44
  5. Ma Y, McClure DD, Somerville MV, Proschogo NW, Dehghani F, Kavanagh JM, et al. 2019. Metabolic engineering of the MEP pathway in Bacillus subtilis for increased biosynthesis of menaquinone-7. ACS Synth. Biol. 8: 1620-1630. https://doi.org/10.1021/acssynbio.9b00077
  6. Baj A, Walejko P, Kutner A, Kaczmarek L, Morzycki JW, Witkowski S. 2016. Convergent synthesis of menaquinone-7 (MK-7). Org. Process Res. Dev. 20: 1026-1033. https://doi.org/10.1021/acs.oprd.6b00037
  7. Mahanama R, Berenjian A, Valtchev P, Talbot A, Biffin R, Regtop H, et al. 2011. Enhanced production of menaquinone 7 via solid substrate fermentation from Bacillus subtilis. Int. J. Food Eng. 7:1-23.
  8. Berenjian A, Mahanama R, Talbot A, Biffin R, Regtop H, Valtchev P, et al. 2011. Efficient media for high menaquinone-7 production: response surface methodology approach. N Biotechnol. 28: 665-672. https://doi.org/10.1016/j.nbt.2011.07.007
  9. Goodman SR, Marrs BL, Narconis RJ, Olson RE. 1976. Isolation and description of a menaquinone mutant from Bacillus licheniformis. J. Bacteriol. 125: 282-291. https://doi.org/10.1128/jb.125.1.282-289.1976
  10. Yoshiki T, Hisataka T. 1989. Extracellular production of menaquinone-4 by a mutant of Flavobacterium sp. 238-7 with a detergentsupplemented culture. J. Ferment. Bioeng. 67: 102-106. https://doi.org/10.1016/0922-338x(89)90188-8
  11. Berenjian A, Mahanama R, Talbot A, Regtop H, Kavanagh J, Dehghani F. 2014. Designing of an intensification process for biosynthesis and recovery of menaquinone-7. Appl. Biochem. Biotechnol. 172: 1347-1357. https://doi.org/10.1007/s12010-013-0602-7
  12. Mahdinia E, Demirci A, Berenjian A. 2018. Effects of medium components in a glycerol-based medium on vitamin K (menaquinone-7) production by Bacillus subtilis natto in biofilm reactors. Bioprocess Biosyst. Eng. 42: 223-232. https://doi.org/10.1007/s00449-018-2027-8
  13. Cui S, Xia H., Chen T, Gu Y, Lv X, Liu Y, et al. 2020. Cell membrane and electron transfer engineering for improved synthesis of menaquinone-7 in Bacillus subtilis. iScience 23(3): 100918. https://doi.org/10.1016/j.isci.2020.100918
  14. Cui S, Lv X, Wu Y, Li J, Du G, Ledesma-Amaro R, et al. 2019. Engineering a Bifunctional Phr60-Rap60-Spo0A Quorum-Sensing molecular switch for dynamic fine-tuning of menaquinone-7 synthesis in Bacillus subtilis. ACS Synth. Biol. 8: 1826-1837. https://doi.org/10.1021/acssynbio.9b00140
  15. Heider SA, Wolf N, Hofemeier A, Peters-Wendisch P, Wendisch VF. 2014. Optimization of the IPP precursor supply for the production of lycopene, decaprenoxanthin and astaxanthin by Corynebacterium glutamicum. Front Bioeng. Biotechnol. 2: 28.
  16. Xue D, Abdallah II, de Haan, IEM, Sibbald, MJJB, Quax WJ. 2015. Enhanced C30 carotenoid production in Bacillus subtilis by systematic overexpression of MEP pathway genes. Appl. Microbiol. Biotechnol. 99: 5907-5915 https://doi.org/10.1007/s00253-015-6531-3
  17. Chou HH, Keasling JD. 2013. Programming adaptive control to evolve increased metabolite production. Nat. Commun. 4: 2595. https://doi.org/10.1038/ncomms3595
  18. Abdallah, II, Pramastya H, van Merkerk R, Sukrasno, Quax WJ. 2019. Metabolic engineering of Bacillus subtilis toward taxadiene biosynthesis as the first committed step for taxol production. Front Microbiol. 10: 218. https://doi.org/10.3389/fmicb.2019.00218
  19. Ye L, Lv X, Yu H. 2016. Engineering microbes for isoprene production. Metab. Eng. 38: 125-138. https://doi.org/10.1016/j.ymben.2016.07.005
  20. Yan X, Yu HJ, Hong Q, Li SP. 2008. Cre/lox system and PCR-based genome engineering in Bacillus subtilis. Appl. Environ. Microbiol. 74: 5556-5562. https://doi.org/10.1128/AEM.01156-08
  21. Cabrera-Valladares N, Martinez LM, Flores N, Hernandez-Chavez G, Martinez A, Bolivar F, et al. 2012. Physiologic consequences of glucose transport and phosphoenolpyruvate node modifications in Bacillus subtilis 168. J. Mol. Microbiol. Biotechnol. 22: 177-197. https://doi.org/10.1159/000339973
  22. Li M, Hou F, Wu T, Jiang X, Li F, Liu H, et al. 2019. Recent advances of metabolic engineering strategies in natural isoprenoid production using cell factories. Nat. Prod. Rep. 37: 80-99. https://doi.org/10.1039/c9np00016j
  23. Bitok JK, Meyers CF. 2012. 2C-Methyl-d-erythritol 4-phosphate enhances and sustains cyclodiphosphate synthase IspF activity. ACS Chem. Biol. 7: 1702-1710. https://doi.org/10.1021/cb300243w
  24. Li Q, Fan F, Gao X, Yang C, Bi C, Tang J, et al. 2017. Balanced activation of IspG and IspH to eliminate MEP intermediate accumulation and improve isoprenoids production in Escherichia coli. Metab. Eng. 44: 13-21. https://doi.org/10.1016/j.ymben.2017.08.005