DOI QR코드

DOI QR Code

Effect of the Microalga Chlorella fusca CHK0059 on Strawberry PGPR and Biological Control of Fusarium Wilt Disease in Non-Pesticide Hydroponic Strawberry Cultivation

  • Kim, Min-Jeong (Organic Agricultural Division, National Institute of Agricultural Sciences) ;
  • Shim, Chang-Ki (Organic Agricultural Division, National Institute of Agricultural Sciences) ;
  • Ko, Byong-Gu (Organic Agricultural Division, National Institute of Agricultural Sciences) ;
  • Kim, Ju (Organic Agricultural Division, National Institute of Agricultural Sciences)
  • Received : 2020.01.13
  • Accepted : 2020.02.19
  • Published : 2020.05.28

Abstract

The purpose of this study was to identify strawberry wilt pathogens and evaluate the efficacy of Chlorella fusca CHK0059 for improving plant growth and suppressing Fusarium wilt. We identified 10 isolates of wilt pathogens of non-pesticide Seolhyang strawberry plant, including Fusarium oxysporum f. sp. fragariae, using morphological and molecular analysis. On the 15th day after 0.4% CHK0059 treatment, the plant height of the untreated control strawberry plants was significantly greater than that of the CHK0059-treated strawberry plants. After 85 days, both treatments showed a similar tendency regarding the height of the strawberry plants. However, the thickness of strawberry leaves treated with the CHK0059 was found to be 1 mm thicker than that of the untreated control. The flowering percentage of the CHK0059 plants was also 40.2% higher on average than that of the untreated control. The chlorophyll content of strawberry leaves treated with the CHK0059 was also, on average, 6.63% higher than that of the untreated control. After 90 days of the CHK0059 treatment, the incidence of Fusarium wilt in the CHK0059-treated plants had reduced by 9.8% on average compared to the untreated control. The population density of F. oxysporum f. sp. fragariae was also reduced by approximately 86.8% in the CHK0059-treated plants by comparison to the untreated control at 70 days after treatment. The results indicate that the microalga C. fusca CHK0059 is an efficient biological agent for improving strawberry plant growth and suppressing Fusarium wilt disease in organic strawberries.

Keywords

References

  1. Abd El-Motty EZ, Shahin MFM, El-Shiek, MH, Abd El-Migeed MMM. 2010. Effect of algae extracts and yeast application on growth, nutritional status, yield and fruit quality of Keitt mango trees. Agric. Biol. J. N. Am. 3: 421-429.
  2. Abd El hafiz A, Abd Elhafiz A, Gaur SS, Hamdany N, Osman M, Lakshmi TVR. 2015. Chlorella vulgaris and Chlorella pyrenoidosa live cells appear to be promising sustainable biofertilizer to grow rice, lettuce, cucumber and eggplant in the UAE soils. Rece. Res. Sci. Tech. 7: 14-21.
  3. Agwa OK, Ogugbue CJ, Williams EE. 2017. Field evidence of Chlorella vulgaris potentials as a biofertilizer for Hibiscus esculentus. Intl. J. Agr. Res. 4: 181-189.
  4. Beena B. N. and Krishnika A. 2011. Antibacterial activity of freshwater microalga (Scenedesmus sp.) against three bacterial strains. J. Biol. Sci. Res. 2: 160-165.
  5. Bileva T. 2013. Influence of green algae Chlorella vulgaris on infested Xiphinema index grape seedlings. J. Earth Sci. Clim. Change 4: 1000136. https://doi.org/10.4172/2157-7617.1000136
  6. Bloor S, England RR. 1989. Antibiotic production by the cyanobacterium Nostoc muscorum. J. Appl. Phycol. 1: 367-372. https://doi.org/10.1007/BF00003474
  7. Chee HY, Cho TE. 2005. Antifungal activity of plant and marine microalgae extracts against rice blast fungus, Magnaporthe grisea. Kor. J. Myco. 33: 86-88 https://doi.org/10.4489/KJM.2005.33.2.086
  8. Chetsumon A, Fujieda K, Hirata K, Yagi K, Miura Y. 1993. Optimization of antibiotic production by the cyanobacterium Scytonema sp. TISTR 8208 immobilized on polyurethane foam. J. Appl. Phycol. 5: 615-622. https://doi.org/10.1007/BF02184640
  9. Cho CT, Moon BJ. 1984. Studies on the wilt strawberry caused by Fusarium oxysporum f. sp. fragariae in Korea. Kor. J. Plant Prot. 23: 74-81.
  10. Dineshkumar R, Subramanian J, Gopalsamy J, Jayasingam P, Arumugam A, Kannadasan S, et al. 2019. The impact of using microalgae as biofertilizer in maize (Zea mays L.) Waste Biomass Valori. 10: 1101-1110. https://doi.org/10.1007/s12649-017-0123-7
  11. Dubey A, Dubey DK. 2010. Evaluation of cost effective organic fertilizer. 17043. pp. 1-7. (http://www.Orgprints.org.).
  12. El-ghanam AA, Farfour SA, Ragab SS. 2015. Bio-suppression of strawberry fruit rot disease caused by Botrytis cinerea. J. Plant Pathol. Microbiol. S3: 005.
  13. Ely R, Supriya T, Naik CG. 2004. Antimicrobial activity of marine organisms collected off the coast of South East India. J. Exp. Marine Biol. Ecol. 309: 121-127. https://doi.org/10.1016/j.jembe.2004.03.010
  14. Faheed FA, Abd-El Fattah Z. 2008. Effect of Chlorella vulgaris as biofertilizer on growth parameters and metabolic aspects of lettuce plant. J. Agric. Soc. Sci. 4: 165-169.
  15. Frankmolle WP, Larsen LK, Caplan FR, Patterson GML, Knubel G. 1992. Antifungal cyclic peptides from the terrestrial blue-green alga Anabaena laxa. I. isolation and biological properties. J. Antibiot. 45: 1451-1457. https://doi.org/10.7164/antibiotics.45.1451
  16. Garcia-Gonzalez J, Sommerfeld M., 2016. Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. J. Appl. Phycol. 28: 1051-1061. https://doi.org/10.1007/s10811-015-0625-2
  17. Hagga WM, Hoballah MME, Ali RR. 2018. Applications of nano biotechnological microalgae product for imporving wheat productivity in Semai Aied areas. Int. J. Agr. Tech. 14: 675-692.
  18. Hubka V, Kolarik M. 2012. $\beta$-tubulin paralogue tubC is frequently misidentified as the benA gene in Aspergillus section Nigri taxonomy: primer specificity testing and taxonomic consequences. Persoonia 29: 1-10. https://doi.org/10.3767/003158512X658123
  19. Ishibashi M, Moore RE, Patterson GML, Xu C, Clardy J. 1986. Scytophycins, cytotoxic and antimycotic agents from the cyanophyte Scytonema pseudohofmanni. J. Org. Chem. 51: 5300-5306. https://doi.org/10.1021/jo00376a047
  20. Kim CH, Seo HD, Cho WD, Kim SB. 1982. Studies on varietal resistance and chemical control to the wilt of strawberry caused by Fusarium oxysporum. Kor. J. Plant Prot. 21: 61-67.
  21. Kim MJ, Shim CK, Kim YK, Hong SJ, Park JH, Han EJ, et al. 2014. Isolation and morphological identification of fresh water green algae from organic farming habitats in Korea. Korean J. Organic Agric. 22: 743-760. https://doi.org/10.11625/KJOA.2014.22.4.743
  22. Kim MJ, Shim CK, Kim YK, Ko BG, Park JH, Hwang SG, et al. 2018. Effect of biostimulator, Chlorella fusca on improving growth and qualities of Chinese chives and spinach in organic farm. Plant Pathol. J. 34: 567-574. https://doi.org/10.5423/PPJ.FT.11.2018.0254
  23. Kim SJ, Ko EJ, Hong JK, Jeun YC. 2018. Ultrastructures of Colletotrichum orbiculare in cucumber leaves expressing systemic acquired resistance mediated by Chlorella fusca. Plant Pathol. J. 24: 113-120.
  24. Koike ST, Kirkpatrick SC, Gordon TR. 2009. Fusarium wilt of strawberry caused by Fusarium oxysporum in California. Plant Dis. 93: 1077.
  25. Komada H, 1976. A new selective medium for isolating Fusarium from natural soil. Proc. Ann. Phytopathol. Soc. 3: 221.
  26. Komada T, Fukui T. 1982. Heating with plastic-film mulching in the out-door field for control of Fusarium wilt of strawberry. Ann. Phytopathol. Soc. Japan 48: 699-701. https://doi.org/10.3186/jjphytopath.48.699
  27. Korea Rural Economic Institute (KREI). 2017. 2016 Agricultural outlook. KREI. pp. 824.
  28. Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. and Evol. 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
  29. Lozano MS, Star JV, Maiti RK, Oranday CA, Gaona RH, Aranda HE, et al. 1999. Effect of an algal extract and several plant growth regulators on the nutritive value of potatoes (Solanum tuberosum L. var. Giant). Archives Latinoamericanos de Nutricion, 49: 166-170.
  30. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2015. Agriculture, food and rural affairs statistics yearbook. MAFRA, Sejong, Korea. pp 387. (In Korean)
  31. Moore RE, Patterson GML, Myndrese JS, Barchi JJ, Norton TR. 1986. Toxins from cyanophyte belonging to the Scytonemataceae. Pure Appl. Chem. 58: 263-271. https://doi.org/10.1351/pac198658020263
  32. Mori M. 1999. Prevention of runner transmission of strawberry Fusarium wilt fungus by cutting daughter plants as propagule at their second leaf stage. Farming Hort. 53: 137-140.
  33. Nagaraian G, Nam MH, Song JY, Yoo SJ, Kim HG. 2004. Genetic variation in Fusarium oxysporum f. sp. fagariae populations-based RAPD and rDNA RFLP analyses. Plant Pathol. J. 20: 264-270. https://doi.org/10.5423/PPJ.2004.20.4.264
  34. Nam MH, Kang YJ, Lee IH, Kim HK, Chun CH. 2011. Infection of daughter plants by Fusarium oxysporum f. sp. fragariae through runner propagation of strawberry. Kor. J. Hort. Sci. Technol. 29: 273-277. (In Korean)
  35. Nam MH, Kim HS, Kim HK. 2011. Control of Fusarium wilt of the strawberry caused by Fusarium oxysporum f. sp. fragariae of solarization with compost and calcium cyanamide application. Res. Plant Dis. 17: 32-37. (In Korean) https://doi.org/10.5423/RPD.2011.17.1.032
  36. Nam MH, Kim TI, Kim HS, Lee IH, Lee HC, Jang WS. 2015. Compendium of strawberry disease and pests 3rd edtion. pp. 260. RDA Strawberry export research specialization projects. pp. 260. (In Korean).
  37. Nam MH, Lee HC, Kim TI, Lee EM, Yoon HS. 2018. Effect of nutrient solution pH and electrical conductivity on Fusarium wilt on strawberry plants in hydroponic culture. Res. Plant Dis. 24: 26-32. (In Korean) https://doi.org/10.5423/RPD.2018.24.1.26
  38. Nam MH, Nam YG, Kim TI, Kim HS, Jang WS, Lee WK, et al. 2009. Compendium of strawberry diseases and pests. Chungnam Strawberry Association. pp. 204. (In Korean)
  39. Nelson P.E. 1981. Life cycle and epidemiology of Fusarium oxysporum. In: Fungal wilt disease of plant, eds. By Mace, M. E., Bell, A. A. and Beckman, C. H., pp. 51-78. Academic Press, New York, NY, USA.
  40. Nelson PE, Toussoun TA, Marasas WFO, 1983. Fusarium Species. An Illustrated Manual for Identification. Pennsylvania State University Press, University Park, PA.
  41. O'Donnell K, Cigeliik E. 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylogen. Evol. 7: 103-116. https://doi.org/10.1006/mpev.1996.0376
  42. Odog V, Strik WA, Lenobel R, Bancifova M, Staden J van, Szigeti J, et al. 2004. Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. J. Appl. Physicol. 16: 309-401. https://doi.org/10.1023/B:JAPH.0000047789.34883.aa
  43. Okamoto H, Fujii S, Kato K, Yoshioka A. 1970. A new strawberry disease Fusarium wilt. Plant Prot. 24: 231-235.
  44. Okayama K, Horimoto K, Kobatake H, Kodama T, Kitagawa Y. 1988. Studies on the control of Fusarium wilt of strawberry by proceeding crops. I. Effect of preceding crops on Fusarium wilt of strawberry and presence of microorganisms in the soil. Bull. Nara. Agri. Expt. Sta. 19: 67-78.
  45. Ozdemir S, Sukatar A, Oztekin GB. 2016. Production of Chlorella vulgaris and its effect on plant growth, yield and fruit quality of organic tomato grown in greenhouse as biofertilizer. J. Agr. Sci.22: 596-605. https://doi.org/10.1017/S0021859600054125
  46. Park JY, Kim SH, Kim NH, Lee SW, Jeun YC, Hong JK. 2017. Differential inhibitory activities of four plant essential oils on in vitro growth of Fusarium oxysporum f. sp. fragariae causing Fusarium Wilt in strawberry plants. Plant Pathol. J. 33: 582-588. https://doi.org/10.5423/PPJ.OA.06.2017.0133
  47. Sanmukh S, Bruno B, Ramakrishnan U, Khairnar K, Swaminathan S. 2014. Bioactive compounds derived from microalgae showing antimicrobial activities. J. Aquac. Res. Devel. 5: 2-24.
  48. Steven TK, Thomas RG. 2015. Management of Fusarium wilt of strawberry. Crop Prot. 73: 67-72. https://doi.org/10.1016/j.cropro.2015.02.003
  49. Strick WA, Novak O, Stmad M, Staden J. 2003. Cytokinins in macro algae. Plant Growth Regul. 41: 13-24. https://doi.org/10.1023/A:1027376507197
  50. Summeral BA, Salleh B, Leslie JF. 2003. A Utilitarian Approach to Fusarium Identification. Plant Dis. 87: 17-128.
  51. Tuney I, Cadirci BH, Unal D, Sukatar A. 2006. Antimicrobial activities of the extracts of marine algae from the coast of Urla (Izmir, Turkey). Turkish J. Biol. 30: 171-175.
  52. White TJ, Bruns T, Lee S, Yaylor J. 1990. Amplification and sequencing of fumgal ribosomal RNA genes for phylogenetics. pp.315-322. In; Innis MA, Gelfrans DH, Sninsky JJ, White TJ. (eds.). PCR protocols: A guide to Methods and Applications, Academic Press, New Tork.
  53. Winks BL, Williams YN. 1965. A wilt of strawberry caused by a new form of Fusarium oxysporum, Queensland. J. Afric. Animal Sci. 22: 475-479.
  54. Zaccaro MC, Caire Zulpa de G, Cano M, Palma M, Colombo K. 1999. Effect of cyanobacterial inoculation and fertilizers on rice seedlings and post-harvest soil structure. Comm. Soil Sci. Plant Anal. 30: 97-107. https://doi.org/10.1080/00103629909370187