DOI QR코드

DOI QR Code

Triclinic Na3.12Co2.44(P2O7)2 as a High Redox Potential Cathode Material for Na-Ion Batteries

  • Ha, Kwang-Ho (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University) ;
  • Kwon, Mi-Sook (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University) ;
  • Lee, Kyu Tae (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University)
  • Received : 2019.11.11
  • Accepted : 2020.01.02
  • Published : 2020.05.31

Abstract

Two types of sodium cobalt pyrophosphates, triclinic Na3.12Co2.44(P2O7)2 and orthorhombic Na2CoP2O7, are compared as high-voltage cathode materials for Na-ion batteries. Na2CoP2O7 shows no electrochemical activity, delivering negligible capacity. In contrast, Na3.12Co2.44(P2O7)2 exhibits good electrochemical performance, such as high redox potential at ca. 4.3 V (vs. Na/Na+) and stable capacity retention over 50 cycles, although Na3.12Co2.44(P2O7)2 delivered approximately 40 mA h g-1. This is attributed to the fact that Na2CoP2O7 (~3.1 Å) has smaller diffusion channel size than Na3.12Co2.44(P2O7)2 (~4.2 Å). Moreover, the electrochemical performance of Na3.12Co2.44(P2O7)2 is examined using Na cells and Li cells. The overpotential of Na cells is smaller than that of Li cells. This is due to the fact that Na3.12Co2.44(P2O7)2 has a smaller charge transfer resistance and higher diffusivity for Na+ ions than Li+ ions. This implies that the large channel size of Na3.12Co2.44(P2O7)2 is more appropriate for Na+ ions than Li+ ions. Therefore, Na3.12Co2.44(P2O7)2 is considered a promising high-voltage cathode material for Na-ion batteries, if new electrolytes, which are stable above 4.5 V vs. Na/Na+, are introduced.

Keywords

References

  1. Ellis, B. L., Nazar, L. F., Curr. Opin. Solid. St. M., 2012, 16(4), 168-177. https://doi.org/10.1016/j.cossms.2012.04.002
  2. Palomares, V., Serras, P., Villaluenga, I., Hueso, K. B., Carretero-Gonzalez, J., Rojo, T., Energy Environ. Sci., 2012, 5(3), 5884-5901. https://doi.org/10.1039/c2ee02781j
  3. Slater, M. D., Kim, D., Lee, E., Johnson, C. S., Adv Funct Mater, 2013, 23(8), 947-958. https://doi.org/10.1002/adfm.201200691
  4. Hong, S. Y., Kim, Y., Park, Y., Choi, A., Choi, N. S., Lee, K. T., Energy Environ. Sci., 2013, 6(7), 2067-2081. https://doi.org/10.1039/c3ee40811f
  5. Braconnier, J. J., Delmas, C., Fouassier, C., Hagenmuller, P., Mater. Res. Bull., 1980, 15(12), 1797-1804. https://doi.org/10.1016/0025-5408(80)90199-3
  6. Berthelot, R., Carlier, D., Delmas, C., Nat. Mater., 2011, 10(1), 74-80. https://doi.org/10.1038/nmat2920
  7. Braconnier, J. J., Delmas, C., Hagenmuller, P., Mater. Res. Bull., 1982, 17(8), 993-1000. https://doi.org/10.1016/0025-5408(82)90124-6
  8. Takeda, Y., Nakahara, K., Nishijima, M., Imanishi, N., Yamamoto, O., Takano, M., Kanno, R., Mater. Res. Bull., 1994, 29(6), 659-666. https://doi.org/10.1016/0025-5408(94)90122-8
  9. Didier, C., Guignard, M., Darriet, J., Delmas, C., Inorg. Chem., 2012, 51(20), 11007-11016. https://doi.org/10.1021/ic301505e
  10. Guignard, M., Didier, C., Darriet, J., Bordet, P., Elkaim, E., Delmas, C., Nat. Mater., 2013, 12(1), 74-80. https://doi.org/10.1038/nmat3478
  11. Sauvage, F., Laffont, L., Tarascon, J. M., Baudrin, E., Inorg. Chem., 2007, 46(8), 3289-3294. https://doi.org/10.1021/ic0700250
  12. Yabuuchi, N., Kajiyama, M., Iwatate, J., Nishikawa, H., Hitomi, S., Okuyama, R., Usui, R., Yamada, Y., Komaba, S., Nat. Mater., 2012, 11(6), 512-517. https://doi.org/10.1038/nmat3309
  13. Komaba, S., Yabuuchi, N., Nakayama, T., Ogata, A., Ishikawa, T., Nakai, I., Inorg. Chem., 2012, 51(11), 6211-6220. https://doi.org/10.1021/ic300357d
  14. Sathiya, M., Hemalatha, K., Ramesha, K., Tarascon, J. M., Prakash, A. S., Chem. Mater., 2012, 24(10), 1846-1853. https://doi.org/10.1021/cm300466b
  15. Tripathi, R., Wood, S. M., Islam, M. S., Nazar, L. F., Energy Environ. Sci., 2013, 6(8), 2257-2264. https://doi.org/10.1039/c3ee40914g
  16. Ellis, B. L., Makahnouk, W. R. M., Rowan-Weetaluktuk, W. N., Ryan, D. H., Nazar, L. F., Chem. Mater., 2010, 22(3), 1059-1070. https://doi.org/10.1021/cm902023h
  17. Barker, J., Saidi, M. Y., Swoyer, J. L., Electrochem. Solid. St., 2003, 6(1), A1-A4. https://doi.org/10.1149/1.1523691
  18. Sauvage, F., Quarez, E., Tarascon, J. M., Baudrin, E., Solid. State. Sci., 2006, 8(10), 1215-1221. https://doi.org/10.1016/j.solidstatesciences.2006.05.009
  19. Gover, R. K. B., Bryan, A., Burns, P., Barker, J., Solid. State. Ion., 2006, 177(17-18), 1495-1500. https://doi.org/10.1016/j.ssi.2006.07.028
  20. Yuvaraj, S., Oh, W., Yoon, W. S., J. Electrochem. Sci. Te., 2019, 10(1), 1-13. https://doi.org/10.5599/jese.676
  21. Trad, K., Carlier, D., Croguennec, L., Wattiaux, M., Lajmi, B., Ben Amara, M., Delmas, C., J. Phys. Chem. C., 2010, 114(21), 10034-10044. https://doi.org/10.1021/jp100751b
  22. Kim, H., Shakoor, R. A., Park, C., Lim, S. Y., Kim, J. S., Jo, Y. N., Cho, W., Miyasaka, K., Kahraman, R., Jung, Y., Choi, J. W., Adv. Funct. Mater., 2013, 23(9), 1147-1155. https://doi.org/10.1002/adfm.201201589
  23. Barpanda, P., Liu, G., Avdeev, M., Yamada, A., Chem. Electrochem., 2014, 1(9), 1488-1491.
  24. Barpanda, P., Ye, T., Avdeev, M., Chung, S. C., Yamada, A., J. Mater. Chem. A., 2013, 1(13), 4194-4197. https://doi.org/10.1039/c3ta10210f
  25. Park, C. S., Kim, H., Shakoor, R. A., Yang, E., Lim, S. Y., Kahraman, R., Jung, Y., Choi, J. W., J. Am. Chem. Soc., 2013, 135(7), 2787-2792. https://doi.org/10.1021/ja312044k
  26. Ha, K.-H., Woo, S. H., Mok, D., Choi, N.-S., Park, Y., Oh, S. M., Kim, Y., Kim, J., Lee, J., Nazar, L. F., Lee, K. T., Adv. Energy Mater., 2013, 3(6), 770-776. https://doi.org/10.1002/aenm.201200825
  27. Niu, Y. B., Xu, M. W., Cheng, C. J., Bao, S. J., Hou, J. K., Liu, S. G., Yi, F. L., He, H., Li, C. M., J. Mater Chem. A., 2015, 3(33), 17224-17229. https://doi.org/10.1039/C5TA03127C
  28. Chen, C. Y., Matsumoto, K., Nohira, T., Hagiwara, R., J. Electrochem. Soc., 2015, 162(1), A176-A180. https://doi.org/10.1149/2.0931501jes
  29. Vadivel Murugan, A., Muraliganth, T., Manthiram, A., J. Electrochem. Soc., 2009, 156(2), A79-A83. https://doi.org/10.1149/1.3028304
  30. Erragh, F., Boukhari, A., Elouadi, B., Holt, E. M., J. Cryst Spectrosc., 1991, 21(3), 321-326. https://doi.org/10.1007/BF01156084
  31. Sanz, F., Parada, C., Rojo, J. M., Ruiz-Valero, C., Saez-Puche, R., J. Solid State Chem., 1999, 145(2), 604-611. https://doi.org/10.1006/jssc.1999.8249
  32. Beaury, L., Derouet, J., Binet, L., Sanz, F., Ruiz-Valero, C., J. Solid State Chem., 2004, 177(4-5), 1437-1443. https://doi.org/10.1016/j.jssc.2003.11.028
  33. Barpanda, P., Lu, J. C., Ye, T., Kajiyama, M., Chung, S. C., Yabuuchi, N., Komaba, S., Yamada, A., Rsc. Adv., 2013, 3(12), 3857-3860. https://doi.org/10.1039/c3ra23026k
  34. Song, Y. M., Han, J. G., Park, S., Lee, K. T., Choi, N. S., J. Mater. Chem. A., 2014, 2(25), 9506-9513. https://doi.org/10.1039/C4TA01129E
  35. Levi, M. D., Aurbach, D., J. Phys. Chem. B., 1997, 101(23), 4641-4647. https://doi.org/10.1021/jp9701911
  36. Levi, M. D., Levi, E. A., Aurbach, D., J. Electroanal. Chem., 1997, 421(1-2), 89-97. https://doi.org/10.1016/S0022-0728(96)04833-4
  37. Ura, H., Nishina, T., Uchida, I., J. Electroanal. Chem., 1995, 396(1-2), 169-173. https://doi.org/10.1016/0022-0728(95)03975-M
  38. Tofield, B. C., Farrington, G. C., Nature, 1979, 278(5703), 438-439. https://doi.org/10.1038/278438a0
  39. Farrington, G. C., Dunn, B. S., Briant, J. L., Solid. State. Ion., 1981, 3, 405-408. https://doi.org/10.1016/0167-2738(81)90122-3
  40. Briant, J. L., Farrington, G. C., J. Electrochem. Soc., 1981, 128(9), 1830-1834. https://doi.org/10.1149/1.2127746
  41. Wizansky, A. R., Rauch, P. E., Disalvo, F. J., J. Solid. State Chem., 1989, 81(2), 203-207. https://doi.org/10.1016/0022-4596(89)90007-8

Cited by

  1. Electrochemical investigations of a high‐capacity Na2CrO4/C nanocomposite anode for sodium‐ion batteries vol.46, pp.2, 2020, https://doi.org/10.1002/er.7295