DOI QR코드

DOI QR Code

Theoretical and Experimental Studies on the Adsorption of N-[(E)-Pyridin-2-ylmethylidene] Aniline, a Schiff Base, on Mild Steel Surface in Acid Media

  • N, Mohanapriya. (Department of Chemistry, Sri Ramakrishna Engineering College) ;
  • M, Kumaravel. (Department of Chemistry, PSG College of Technology) ;
  • B, Lalithamani. (Department of Chemistry, Sri Ramakrishna Engineering College)
  • Received : 2019.07.12
  • Accepted : 2019.09.30
  • Published : 2020.05.31

Abstract

The adsorption of N-[(E)-Pyridin-2-ylmethylidene] aniline, a Schiff base, on to mild steel surface in 1M HCl and 0.5 M H2SO4 solutions and the consequent corrosion protection were studied employing weight loss method, electrochemical impedance spectroscopy and potentiodynamic polarization measurements. DFT calculations were performed to investigate its interaction with the metal surface at the atomic level to understand its inhibition mechanism. The adsorption process is well described by the Langmuir isotherm. The thermodynamic parameters indicated that the adsorption is spontaneous and the interaction of the inhibitor at the mild steel surface is mainly through physisorption. The Ra values obtained in AFM studies for the uninhibited and inhibited sample in HCl media respectively are 0.756 and 0.559 ㎛, and that in H2SO4 media are 0.411 and 0.406 ㎛. The lesser roughness values of the inhibited sample shows the adsorption of the molecules onto the mild surface. The inhibition efficiencies were found to improve with concentration of the inhibitor and the maximum efficiency was observed at 400ppm in all the investigation methods adopted. The inhibitor was found to exhibit a higher efficiency in HCl media (95.7%) than in H2SO4 (92.8%). The theoretical and experimental results are found to be in good agreement.

Keywords

References

  1. S. Belkaid, K. Tebbji, A. Mansri, A. Chetouani, B. Hammouti, Res Chem Intermed. 2012, 38(9), 2309-2325. https://doi.org/10.1007/s11164-012-0547-4
  2. Y. X. Li,Y. Y. Zhang, S. Jungwirth, N. Seely, Y. D. Fang, X. M. Shi, Corros. Rev, 2014, 32(5-6), 163-181. https://doi.org/10.1515/corrrev-2014-0002
  3. Yujie Qiang, Lei Guo, Shengtao Zhang, Wenpo Li, Shanshan Yu, Jianhong Tan, Sci. Rep, 2016, 6, 33305 (1-14).
  4. D. Daoud, T. Douadi, S. Issaadi, S. Chafaa, Corros. Sci, 2014, 79, 50-58. https://doi.org/10.1016/j.corsci.2013.10.025
  5. Quiong Deng, Na-Na Ding, Xiao-Li wei, Liang cai, Xiao-Peng He, Yi-Tao Long, Guo-Rong Chen, Kaixian chen, Corros. Sci, 2012, 64, 64-73. https://doi.org/10.1016/j.corsci.2012.07.001
  6. Quiong Deng, Hong-Wei Shi, Na-Na Ding, Bao-Qin Chen, Xiao-Peng He, Guixia Liu, Yun Tang, Yi- Tao Long, Guo-Rong Chen, Corros. Sci, 2012, 57, 220-227. https://doi.org/10.1016/j.corsci.2011.12.014
  7. Ahmed A. Al-Amiery, Fatin A. Binti Kassim, Abdul Amir H. Kadhum, Abu Bakar Mohamad, Sci. Rep, 2016, 6, 19890 (1-13). https://doi.org/10.1038/srep19890
  8. V. S. Sastry, Corrosion Inhibitors, Principles and Applications, John Wiley & Sons, New York, 1998.
  9. F. Bentiss, M. Lagrence, M. Traisnel, Corros, 2000, 56(7), 733-742. https://doi.org/10.5006/1.3280577
  10. F. Bentiss, M. Traisnel, M. Lagrence, J. Appl. Electrochem, 2001, 31, 41-48. https://doi.org/10.1023/A:1004141309795
  11. M. R. Laamari, J. Benzakour, F. Berrekhis, A. Derja, D. Villemin, Arabian. J. Chem, 2016, 9, S245-S251. https://doi.org/10.1016/j.arabjc.2011.03.018
  12. M. Lebrini, M. Traisnel, M. Lagrenee, B. Mernari, F. Bentiss, Corros. Sci, 2008, 50(2), 473-479. https://doi.org/10.1016/j.corsci.2007.05.031
  13. B. B. Damaskin, A. N. Frumkin, Adsorption of molecules on electrodes in: N. S. Hush (Ed.), Reaction of molecules at electrodes, Wiley-Interscience, London, 1971.
  14. M. G. Hosseini, M. Ehteshamzadeh, T. Shahrabi, Electrochim. Acta, 2007, 52(11), 3680-3685. https://doi.org/10.1016/j.electacta.2006.10.041
  15. A. Aytac, U. Ozmen, M. Kabasakaloglu, Mater. Chem. Phys, 2005, 89-(1), 176-181. https://doi.org/10.1016/j.matchemphys.2004.09.003
  16. K. C. Emregul, O. Atakol, Mater. Chem. Phys, 2004, 83(2-3), 373-379. https://doi.org/10.1016/j.matchemphys.2003.11.008
  17. R.A. Prabhu, T.V. Venkatesha, A.V. Shanbhag, G.M. Kulkarni, R.G. Kalkhambkar, Corros. Sci, 2008, 50(12), 3356-3362. https://doi.org/10.1016/j.corsci.2008.09.009
  18. L. M. Rodriguez-Valdez, A. Martinez-Villafane, D. Glossman-Mitnik, J. Mol. Struct. THEOCHEM, 2004, 681(1-3), 83-88. https://doi.org/10.1016/j.theochem.2004.04.058
  19. Gokhan Gece, Corros. Sci, 2008, 50(11), 2981-2992. https://doi.org/10.1016/j.corsci.2008.08.043
  20. M. Kumaravel, S. Rameshkuamar, S. S. Subramanian, S. Gowri, N. Rajasekaran, A. Selvaraj, Electrochim. Actam, 2011, 56(11), 3857-3863. https://doi.org/10.1016/j.electacta.2011.02.036
  21. A. M. Eldesoky, Hala.M.Hassan, A. S. Fouda, Int. J. Electrochem. Sci, 2013, 8, 10376-10395.
  22. A. Doner, R. Solmaz, M. Ozcan, G. Kardas, Corr. Sci, 2011, 53(9), 2902-2913. https://doi.org/10.1016/j.corsci.2011.05.027
  23. E. A. Martins, M. C. L. Oliveira, J. L. Rossi, I. Costa and H. G. de Melo, J. Braz. Chem. Soc, 2011, 22(2), 264-271. https://doi.org/10.1590/S0103-50532011000200011
  24. M. Sahin, S. Bilgic, H. Yilmaz, Appl. Surf. Sci, 2002, 195(1-4), 1-7. https://doi.org/10.1016/S0169-4332(01)00783-8
  25. A. Popova, E. Sokolova, S. Raicheva, M. Christov, Corros. Sci, 2003, 45(1), 33-58. https://doi.org/10.1016/S0010-938X(02)00072-0
  26. A. K. Singh, M. A. Quraishi, Corros. Sci, 2010, 52(4), 1373-1385. https://doi.org/10.1016/j.corsci.2010.01.007
  27. S. K. Shukla, M. A. Quraishi, Corros. Sci, 2010, 52(2), 314-321. https://doi.org/10.1016/j.corsci.2009.09.017
  28. R. S. Chaudhary, S. Sharma, Indian J. Chem. Technol, 1999, 16, 202-206.
  29. C. Verma, L. O. Olasunkanmi, E. E. Ebenso, M. A. Quraishi, and I. B. Obot, J. Phys. Chem. C, 2016, 120(21), 11598-11611. https://doi.org/10.1021/acs.jpcc.6b04429
  30. Z. A. Foroulis, Proc. 6th European Symposium on corrosion Inhibitors, Ann. Univ. Ferrara, Italy, N.S., sez. V, Suppl. N. 8, 1985.
  31. Z. A. Iofa, G. N. Tomashov, Zh. Fiz. Khim, 1960, 34(5), 1036-1043.
  32. T. Murakawa, N. Hackerman, Corros. Sci, 1964, 4(1-4), 387-396. https://doi.org/10.1016/0010-938X(64)90040-X
  33. K. F. Khaled, Int. J. Electrochem. Sci, 2008, 3(4), 462-475.
  34. L. Larabi, Y. Harek, M. Traisnel, A. Mansri, J. Appl. Electrochem, 2004, 34(8), 833-839. https://doi.org/10.1023/B:JACH.0000035609.09564.e6
  35. J. R. Macdonald, W. B. Johanson, J. R. Macdonald (Ed.), Theory in Impedance Spectroscopy, John Wiley& Sons, New York, 1987.
  36. C H. Hsu, F. Mansfeld, Corrosion, 2001, 57(9), 747-748. https://doi.org/10.5006/1.3280607
  37. P. Bommersbach, C. Alemany-Dumont, J. P. Millet, B. Normand, Electrochim. Acta, 2005, 51(6), 1076-1084. https://doi.org/10.1016/j.electacta.2005.06.001
  38. M. S. Abdel-AAl, M. S. Morad, Brit. Corros. J, 2001, 36(4), 253-260. https://doi.org/10.1179/000705901101501703
  39. A. V. Benedeti, P. T. A. Sumodjo, K. Nobe, P. L. Cabot, W. G. Proud, Electrochim. Acta, 1995, 40(16), 2657-2668. https://doi.org/10.1016/0013-4686(95)00108-Q
  40. H. H. Hassan, Electrochim. Acta, 2007, 53(4), 1722-1730. https://doi.org/10.1016/j.electacta.2007.08.021
  41. M. Hosseini, S. F. L. Mertens, M. Ghorbani, M. R. Arshadi, Mater. Chem. Phys, 2003, 78(3), 800-808. https://doi.org/10.1016/S0254-0584(02)00390-5
  42. A. Zarrouk1, H. Zarrok, R. Salghi, R. Touir, B. Hammouti, N. Benchat, L. L. Afrine, H. Hannache, M. El Hezzat, M. Bouachrine, J. Chem. Pharm. Res, 2013, 5(12), 1482-1491.
  43. R. Yildiz, T. Dogan, I. Dehri, Corros. Sci, 2014, 85, 215-221. https://doi.org/10.1016/j.corsci.2014.04.017
  44. K. B. Kabir, I. Mahmud, J. Chem. Eng, 2010, 13-17.
  45. A. Hamdy, Nour Sh.El-Gendy, Egypt. J. Pet, 2013, 22(1), 17-25. https://doi.org/10.1016/j.ejpe.2012.06.002
  46. R. Solmaz, G. Kardas, M. Culha, B. Yazici, M. Erbil, Electrochim. Acta, 2008, 53, 5941-5952. https://doi.org/10.1016/j.electacta.2008.03.055
  47. M. Morad, J. Morvan, J. Pagetti, In: Proceedings of the 8th European Symposium on Corrosion Inhibitors (8SEIC), Sez. V (Suppl. 10). Ann. Univ. Ferrara, NS, 1995.
  48. K. Aramaki, M. Hagiwara, H. Nishihara, Corros. Sci, 1987, 27(5), 487-497. https://doi.org/10.1016/0010-938X(87)90092-8
  49. R. Solmaz, M. E. Mert, G. Kardas, B. Yazici, M. Erbil, Acta Phys. Chem. Sinica, 2008, 24(7), 1185-1191. https://doi.org/10.1016/S1872-1508(08)60053-4
  50. I. Ahamad, R. Prasad, M. A. Quraishi, Corros. Sci, 2010, 52(4), 1472-1481. https://doi.org/10.1016/j.corsci.2010.01.015
  51. S. Kumar, H. Vashisht, L. O. Olasunkanmi, I. Bahadur, H. Verma1, G. Singh, Ime. B. Obot, Eno E. Ebenso, Sci. Rep, 2016, 6, 30937 (1-18).
  52. Robert P. Taylor, Proc. ASME. 1989, 79139.
  53. H. Shokry, M. Yuasa, I. Sekine, R. M. Issa, H. Y. El-Baradie, G. K. Gomma, Corros. Sci, 1998, 40(12), 2173-2186. https://doi.org/10.1016/S0010-938X(98)00102-4
  54. A. Yurt, B. Duran, H. Dal, Arabian J. Chem, 2014, 7(5), 732-740. https://doi.org/10.1016/j.arabjc.2010.12.010
  55. O. L. Riggs, R. M. Hurd, R.M., Corros, 1967, 23(8), 252-260. https://doi.org/10.5006/0010-9312-23.8.252
  56. M. Behpour, S. M. Ghoreishi, A. Gandomi-Niasar, N. Soltani, M. Salavati-Niasari, J. Mater. Sci, 2009, 44(10), 2444-2453. https://doi.org/10.1007/s10853-009-3309-y
  57. Y. Abboud, A. Abourriche, T. Saffaj, M. Berrada, M. Charrouf, A. Bennamara, A. Cherqaoui, D. Takky, Appl. Surf. Sci, 2006, 252(23), 8178-8184. https://doi.org/10.1016/j.apsusc.2005.10.060
  58. S. A. R. Ali Fathima, S. Subhashini, Arabian J. Chem. 2017, 10, Supplement 2, S 3358-S 3366. https://doi.org/10.1016/j.arabjc.2014.01.016
  59. A. R. S. Priya, V. S. Muralidharam, A. Subramania, Corros, 2008, 64(6), 541-552. https://doi.org/10.5006/1.3278490
  60. L. Labrabi, Y. Harek, O. Benali, S. Ghalem, Prog. Org. Coatings, 2005, 54(3), 256-262. https://doi.org/10.1016/j.porgcoat.2005.06.015
  61. C Sini Varghese, K Joby Thomas, Vinod P Raphael and K.S Shaju, Chem Sci Rev Lett, 2017, 6(24), 2300-2308.
  62. Y. Ji , B. Xu , W. Gong, X. Zhang , X. Jin, W. Ning, Y. Meng, W. Yang, Y. Chen, J. Taiwan Inst. Chem. E., 2016, 1-12.
  63. B Xu, Y. Ji, X. Zhang, X. Jin, W. Yang, Y. Chen, RSC Adv, 2015, 5(69), 56049-56059. https://doi.org/10.1039/C5RA09173J
  64. O. Sikemi, O. A. Kolawole, S. Banjo, Manila Journal of Science, 2017, 10(2017), 44-63.
  65. X. Li, S. Deng, T. Lin, X. Xie and G. Du, Corros. Sci, 2017, 118, 202-216. https://doi.org/10.1016/j.corsci.2017.02.011
  66. B. Idir and F. Kellou-Kerkouche, J. Electrochem. Sci. Technol, 2018, 9(4), 260-275. https://doi.org/10.33961/JECST.2018.9.4.260
  67. P. Leena, N. H. Zeinul Hukuman, A. R. Biju, and M. Jisha, J. Electrochem. Sci. Technol, 2019, 10(2), 231-243. https://doi.org/10.5229/jecst.2019.10.2.231
  68. K. R. Ansari, M. A. Quraishi, Ambrish Singh, Measurement, 2015, 76, 136-147. https://doi.org/10.1016/j.measurement.2015.08.028
  69. L. Herrag, B. Hammouti, S. Elkadiri, A. Aouniti, C. Jama, H. Vezin, F. Bentiss, Corros. Sci, 2010, 52(9), 3042-3051. https://doi.org/10.1016/j.corsci.2010.05.024
  70. S. Rameshkumar, I. Danaee, M. RashvandAvei, M. Vijayan, J. Mol. Liq, 2015, 212, 168-186. https://doi.org/10.1016/j.molliq.2015.09.001
  71. P. E. Kumar, M. Govindaraju, V. Sivakumar, Anti-Corros Method M, 2018, 65(1), 19-33. https://doi.org/10.1108/ACMM-04-2017-1783
  72. P. R. Roberge, Handbook of Corrosion Engineering, McGraw-Hill, New York, 2000.
  73. V. S. Sastri, J. R. Perumareddi, Corros, 1997, 53(8), 617-622. https://doi.org/10.5006/1.3290294
  74. I. Lukovits, E. Kalman, F. Zucchi, Corros, 2000, 57, 3-8.
  75. R. Hasanov, M. Sadiko?lu, S. Bilgic, Appl. Surf. Sci, 2007, 253(8), 3913-3921. https://doi.org/10.1016/j.apsusc.2006.08.025
  76. E. E. Ebenso, D. A. Isabirye, N. O. Eddy, Int. J. Mol. Sci, 2010, 11(6), 2473-2498. https://doi.org/10.3390/ijms11062473
  77. A. Y. Musa, A. H. Kadhum, A. B. Mohamad, A. A. B. Rahoma, H. Mesmari, J. Mol. Struct, 2010, 969(1-3), 233-237. https://doi.org/10.1016/j.molstruc.2010.02.051

Cited by

  1. Corrosion behaviour of new oxo-pyrimidine derivatives on mild steel in acidic media: Experimental, surface characterization, theoretical, and Monte Carlo studies vol.7, 2020, https://doi.org/10.1016/j.apsadv.2021.100200