DOI QR코드

DOI QR Code

Exploring the Intention to Use of Virtual Reality-Based Cognitive Training System for the Elderly Residing in Community Based on Extended Technology Acceptance Model

확장된 기술수용모델을 활용한 지역사회노인의 가상현실 기반 인지훈련시스템 사용의도 탐색

  • 최문종 (대구창조경제혁신센터 본부) ;
  • 최재성 (선문대학교 컴퓨터공학부) ;
  • 천승호 ((주)인더텍 & (주)휴메닉) ;
  • 하영미 (경상대학교 간호대학 & 건강과학연구원) ;
  • 양승경 (경남대학교 간호학과)
  • Received : 2020.03.25
  • Accepted : 2020.05.20
  • Published : 2020.05.28

Abstract

The purpose of this study was to identify the intention to use of virtual reality-based cognitive training system for the elderly residing in community based on extended technology acceptance model. The data were collected 100 elderly residing in community from January 2 to January 31, 2020. As a result, the influence the intent to use a virtual reality-based cognitive training system for the elderly is social influence, perceived usefulness, perceived enjoyment, age. The explaining 54.4% of the variance, it is considered that technology development these factors will be necessary for elderly in the community to promote the intent to use of virtual reality-based cognitive training systems. This study is meaningful in that it has identified the degree of intent to use and influencing factors of virtual reality devices for the elderly in the community. This study could be used as basic data for the development of technologies for virtual reality-based cognitive training systems in the future.

본 연구는 확장된 기술수용모델을 활용하여 지역사회 노인의 가상현실 기반 인지훈련시스템 사용의도에 영향을 미치는 요인을 파악하기 위한 조사연구이다. 자료 수집은 지역사회 거주하는 노인 100명을 대상으로 2020년 1월 2일부터 1월 31일까지 설문조사를 실시하였다. 연구결과 지역사회 노인의 가상현실 기반 인지훈련시스템 사용의도에 영향을 미치는 요인은 사회적 영향, 지각된 유용성, 쾌락적 동기, 연령 이였으며, 설명력은 54.4%였다. 본 연구결과 지역사회 노인들의 가상현실 기반 인지훈련시스템 사용의도를 촉진하기 위해서는 이러한 요인들을 고려한 기술개발이 필요할 것으로 생각된다. 본 연구는 지역사회 거주 노인을 대상으로 가상현실기기 사용의도 정도와 영향요인을 파악하였다는 점에 그 의의가 있으며, 향후 가상현실 기반 인지훈련시스템 기술개발을 위한 기초자료로 활용될 수 있을 것이다.

Keywords

References

  1. Statistics Korea. (2019). http://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1BPA003&vw_cd=&list_id=&scrId=&seqNo=&lang_mode=ko&obj_var_id=&itm_id=&conn_path=B1&path=%252Fconts%252FnsportalStats%252FnsportalStats_0102Body.jsp
  2. J. J. Koh. (2018). A review of long-term care insurance for the elderly by access to an aging society. Low and Policy, 24(1), 27-61. DOI :10.36727/jjlpr.24.1.201803.002
  3. E. S. Lee. (2017) The physical activity and smart health care of trend for the elderly. Journal of Digital Convergence, 15(8), 511-516. DOI: 10.14400/JDC.2017.15.8.511
  4. Korean Dementia Association. (2012). Dementia a clinical approach. Seoul: Academia.
  5. N. T. Lautenschlager & O. P Almeida. (2006). Physical activity and cognition in old age. Current Opinion in Psychiatry, 19(2), 190-193. DOI: 10.1097/01.yco.0000214347.38787.37
  6. M. V. Sanchez-Vives & M. Slater. (2005). From presence to consciousness through virtual reality. Nature Reviews Neuroscience, 6(4), 332-339. DOI: 10.1038/nrn1651
  7. H. Kim, M. Lee & Y. Yang (2018). Literature research on the clinical effect of the virtual reality-based rehabilitation program. Journal of Society of Occupational therapy for the Aged and Dementia, 12(1), 1-11. DOI: http://dx.doi.org/10.34263/jsotad.2018.12.1.1
  8. J. H. Lee. (2019). A study on the revitalization of virtual reality-based education. Journal of the Korean Society of Design Culture, 25(1), 357-366. https://doi.org/10.18208/ksdc.2019.25.1.357
  9. E. P. Cherniack. (2011). Not just fun and games: applications of virtual reality in the identification and rehabilitation of cognitive disorders of the elderly. Disability & Rehabilitation: Assistive Technology, 6(4), 283-289. DOI: 10.3109/17483107.2010.542570
  10. F. D. Rose, E. A. Attree, B. M. Brooks, D. M. Parslow, P. R. Penn & N. Ambihaipahan. (2000). Training in virtual environments: transfer to real world tasks and equivalence to real task training. Ergonomics, 43(4), 494-511. DOI: 10.1080/001401300184378
  11. A. Mirelman, B. L. Patritti, P. Bonato & J. E. Deutsch. (2010). Effects of virtual reality training on gait biomechanics of individuals post-stroke. Gait & Posture, 31(4), 433-437. DOI: 10.1016/j.gaitpost.2010.01.016
  12. J. W. Yoo, D. H. Ahn, S. H. Choun & S. P. Heo. (2019). Dementia care system using virtual reality with non-wearable sensing technology. Proceedings of the Korean Society of Computer Information Conference, 27(1), 79-82.
  13. T. F. Hughes, J. T. Becker, C. W. Lee, C. C. Chang & M. Ganguli. (2015). Independent and combined effects of cognitive and physical activity on incident MCI. Alzheimers & Dementia, 11(11), 1377-1384. DOI: 10.1016/j.jalz.2014.11.007
  14. E. J. A. Scherder et al. (2005). Physical activity and executive functions in the elderly with mild cognitive impairment. Aging & Mental Health, 9(3), 272-280. DOI: 10.1080/13607860500089930
  15. W. S. Choi, D. Y. Kang & S. J. M. Choi. (2017). Understanding factors influencing usage and purchase intention of a VR device : an extension of UTAUT2. Information Society & Media, 18(3), 173-208.
  16. J. An & K. Park. (2019). Influencing factors on pre-implementation acceptance of geron technology for the elderly residing in community. Journal of Digital Convergence, 17(7), 157-165. DOI: 10.14400/JDC.2019.17.7.157
  17. S. Kathleen, Q. H. Anabel & M. Kim. (2017). Problematizing the digital literacy paradox in the context of older adults' ICT use: Aging, media discourse, and self-determination. Canadian Journal of Communication, 42(2), 359ᐨ377.
  18. F. D. Davis. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. Management Information Systems Quarterly, 13(3), 319-340. DOI: 10.2307/249008
  19. V. Venkatesh & F. D. Davis. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204. DOI: 10.1287/mnsc.46.2.186.11926
  20. F. Abdullah & R. Ward. (2016). Developing a general extended technology acceptance model for e-learning (GETAMEL) by analysing commonly used external factors. Computers in Human Behavior, 56, 238-256. DOI: 10.1016/j.chb.2015.11.036
  21. J. W. Moon & Y. G. Kim. (2001). Extending the TAM for a World-Wide-Web context. Information & Management, 38(4), 217-230. DOI: 10.1016/S0378-7206(00)00061-6
  22. J. Ahn & S. H. Yi. (2015). Factors associated with usage intention of smart technology in long-term care facilities: based on the technology acceptance model(TAM & TAM2). Korean Journal of Gerontological Social Welfare, 68, 357-387. DOI: 10.21194/kjgsw.68.201506.357
  23. Y. G. Kim. (2015). The effect of the virtual reality rehabilitation system on activities of daily living, cognitive function, self-esteem in stroke. Journal of the Korea Academia-Industrial cooperation Society, 16(8), 5476-5484. https://doi.org/10.5762/KAIS.2015.16.8.5476
  24. H. J. Jang & G. Y. Noh. (2017). Extended technology acceptance model of VR head-mounted display in early stage of diffusion. Journal of Digital Convergence, 15(5), 353-361. DOI: 10.14400/JDC.2017.15.5.353
  25. Q. Q. Chen & H. J. Park. (2018). Consumer study on the acceptance of VR headsets based on the extended TAM. Journal of Digital Convergence, 16(6), 117-126. DOI: 10.14400/JDC.2018.16.6.117
  26. S. Syed-Abdul et al. (2019). Virtual reality among the elderly: a usefulness and acceptance study from Taiwan. BMC Geriatrics, 19, 223. DOI: 10.1186/s12877-019-1218-8
  27. G. H. Lee. (2017). Effects of a virtual reality exercise program(Wii) on cognitive function of elderly people with alzheimer dementia. The Official Journal of The Korean Association of Certified Exercise Professionals, 19(1), 35-44.
  28. J. H. Hwang & M. S. Park. (2018). Effect of a dual-task virtual reality program for seniors with mild cognitive impairment. Korean Journal of Clinical Laboratory Science, 50(4), 492-500. https://doi.org/10.15324/kjcls.2018.50.4.492
  29. V. Venkatesh, J. Y. L. Thong, & X. Xu. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. Management Information Systems Quarterly, 36(1), 157-178. DOI: 10.2307/41410412
  30. J. Y. Na & M. Y. Wui. (2019). A study on the intention of using VR games : focusing on technology acceptance model(TAM). Journal of Korea Game Society, 19(3), 53-64. https://doi.org/10.7583/JKGS.2019.19.3.53
  31. S. T. Peek, E. J. Wouters, J. V. Hoof, K. G. Luijkx, H. R. Boeije & H. J. Vrijhoef. (2014). Factors influencing acceptance of technology for aging in place: A systematic review. International Journal of Medical Informatics, 83(4), 235-248. DOI: 10.1016/j.ijmedinf.2014.01.004
  32. K. Renaud & J. Van Biljon. (2008. October). Predicting technology acceptance and adoption by the elderly: a qualitative study. In the Proceedings of the 2008 annual research conference of the South African Institute of Computer Scientists and Information Technologists on IT research in developing countries: riding the wave of technology. (pp. 210-219). New York: ACM. DOI: 10.1145/1456659.1456684
  33. R. P. Bagozzi & K. H. Lee. (2002). Multiple routes for social influence: the role of compliance, internalization, and social identity. Social Psychology Quarterly, 65(3), 226-247. DOI: 10.2307/3090121
  34. S. M. Moon. (2019). The effects on intention use by the service quality and social influence of the AI speaker: A survey analysis based on an Extended Technology Acceptance Model. Master's thesis. Hongik University, Seoul.
  35. S. T. An, H. N. Kang & S. D. Chung. (2018). Older adults' adoption of health-related mobile application: the role of empowerment. Journal of Public Relations, 22(6), 53-74. DOI: 10.15814/jpr.2018.22.6.53
  36. H. Sun & P. Zhang. (2006). The role of moderating factors in user technology acceptance. International Journal of Human-Computer Studies, 64(2), 53-78. https://doi.org/10.1016/j.ijhcs.2005.04.013
  37. E. L. Shamy & K. Hassanein (2017, January). A meta-analysis of enjoyment effect on technology acceptance: the moderating role of technology conventionality. In Proceedings of the 50th Hawaii International Conference on System Sciences. (pp. 4139-4147).
  38. J. O. Lee & Y. M. Kim. (2013). A Study on the impact of the app-book purchasing behavior of smart phone users in korea. The Journal of Society for e-Business Studies, 18(3), 45-67. https://doi.org/10.7838/jsebs.2013.18.3.045
  39. B. G. Chung & H. L. Dong. (2019). Influential factors on technology acceptance of augmented reality(AR). Asia-Pacific Journal of Business and Venturing, 14(3), 153-168.
  40. A. Morris, J. Goodman & H. Brading. (2007). Internet use and non-use: views of older users. Universal Access in the Information Society, 6(1), 43-57. https://doi.org/10.1007/s10209-006-0057-5
  41. H. J. Kim & J. Y. Rha. (2017). Consumer resistance to smartwatches : gender and age differences. The Korea Contents Society, 17(12), 447-460. DOI: 10.5392/JKCA.2017.17.12.447
  42. K. H. Han & H. T. Kim. (2011). The Cause and solution of cybersickness in 3D virtual environments. The Korean Journal of Cognitive and Biological Psychology, 23(2), 287-299. https://doi.org/10.22172/cogbio.2011.23.2.007