DOI QR코드

DOI QR Code

Gametophytic Abortion in Heterozygotes but Not in Homozygotes: Implied Chromosome Rearrangement during T-DNA Insertion at the ASF1 Locus in Arabidopsis

  • Min, Yunsook (Department of Biological Sciences, Seoul National University) ;
  • Frost, Jennifer M. (Department of Plant and Microbial Biology, University of California) ;
  • Choi, Yeonhee (Department of Biological Sciences, Seoul National University)
  • Received : 2019.11.25
  • Accepted : 2020.03.08
  • Published : 2020.05.31

Abstract

T-DNA insertional mutations in Arabidopsis genes have conferred huge benefits to the research community, greatly facilitating gene function analyses. However, the insertion process can cause chromosomal rearrangements. Here, we show an example of a likely rearrangement following T-DNA insertion in the Anti-Silencing Function 1B (ASF1B) gene locus on Arabidopsis chromosome 5, so that the phenotype was not relevant to the gene of interest, ASF1B. ASF1 is a histone H3/H4 chaperone involved in chromatin remodeling in the sporophyte and during reproduction. Plants that were homozygous for mutant alleles asf1a or asf1b were developmentally normal. However, following self-fertilization of double heterozygotes (ASF1A/asf1a ASF1B/asf1b, hereafter AaBb), defects were visible in both male and female gametes. Half of the AaBb and aaBb ovules displayed arrested embryo sacs with functional megaspore identity. Similarly, half of the AaBb and aaBb pollen grains showed centromere defects, resulting in pollen abortion at the bi-cellular stage of the male gametophyte. However, inheritance of the mutant allele in a given gamete did not solely determine the abortion phenotype. Introducing functional ASF1B failed to rescue the AaBb- and aaBb-mediated abortion, suggesting that heterozygosity in the ASF1B gene causes gametophytic defects, rather than the loss of ASF1. The presence of reproductive defects in heterozygous mutants but not in homozygotes, and the characteristic all-or-nothing pollen viability within tetrads, were both indicative of commonly-observed T-DNA-mediated translocation activity for this allele. Our observations reinforce the importance of complementation tests in assigning gene function using reverse genetics.

Keywords

References

  1. Castle, L.A., Errampalli, D., Atherton, T.L., Franzmann, L.H., Yoon, E.S., and Meinke, D.W. (1993). Genetic and molecular characterization of embryonic mutants identified following seed transformation in Arabidopsis. Mol. Gen. Genet. 241, 504-514.
  2. Chen, Z., Hafidh, S., Poh, S.H., Twell, D., and Berger, F. (2009). Proliferation and cell fate establishment during Arabidopsis male gametogenesis depends on the Retinoblastoma protein. Proc. Natl. Acad. Sci. U. S. A. 106, 7257-7262. https://doi.org/10.1073/pnas.0810992106
  3. Christensen, C.A., King, E.J., Jordan, J.R., and Drews, G.N. (1997). Megagametogenesis in Arabidopsis wild type and the Gf mutant. Sex. Plant Reprod. 10, 49-64. https://doi.org/10.1007/s004970050067
  4. Clark, K.A. and Krysan, P.J. (2010). Chromosomal translocations are a common phenomenon in Arabidopsis thaliana T-DNA insertion lines. Plant J. 64, 990-1001. https://doi.org/10.1111/j.1365-313X.2010.04386.x
  5. Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823. https://doi.org/10.1126/science.1231143
  6. Curtis, M.J., Belcram, K., Bollmann, S.R., Tominey, C.M., Hoffman, P.D., Mercier, R., and Hays, J.B. (2009). Reciprocal chromosome translocation associated with TDNA-insertion mutation in Arabidopsis: genetic and cytological analyses of consequences for gametophyte development and for construction of doubly mutant lines. Planta 229, 731-745. https://doi.org/10.1007/s00425-008-0868-0
  7. English, C.M., Maluf, N.K., Tripet, B., Churchill, M.E.A., and Tyler, J.K. (2005). ASF1 binds to a heterodimer of histories H3 and H4: a two-step mechanism for the assembly of the H3-H4 heterotetramer on DNA. Biochemistry 44, 13673-13682. https://doi.org/10.1021/bi051333h
  8. Errampalli, D., Patton, D., Castle, L., Mickelson, L., Hansen, K., Schnall, J., Feldmann, K., and Meinke, D. (1991). Embryonic lethals and T-DNA insertional mutagenesis in Arabidopsis. Plant Cell 3, 149-157. https://doi.org/10.2307/3869284
  9. Fang, Y. and Spector, D.L. (2005). Centromere positioning and dynamics in living Arabidopsis plants. Mol. Biol. Cell 16, 5710-5718. https://doi.org/10.1091/mbc.e05-08-0706
  10. Feldmann, K.A. and Marks, M.D. (1987). Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol. Gen. Genet. 208, 1-9. https://doi.org/10.1007/BF00330414
  11. Feldmann, K.A., Marks, M.D., Christianson, M.L., and Quatrano, R.S. (1989). A dwarf mutant of Arabidopsis generated by T-DNA insertion mutagenesis. Science 243, 1351-1354. https://doi.org/10.1126/science.243.4896.1351
  12. Ingouff, M., Hamamura, Y., Gourgues, M., Higashiyama, T., and Berger, F. (2007). Distinct dynamics of HISTONE3 variants between the two fertilization products in plants. Curr. Biol. 17, 1032-1037. https://doi.org/10.1016/j.cub.2007.05.019
  13. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821. https://doi.org/10.1126/science.1225829
  14. Jupe, F., Rivkin, A.C., Michael, T.P., Zander, M., Motley, S.T., Sandoval, J.P., Slotkin, R.K., Chen, H., Castanon, R., Nery, J.R., et al. (2019). The complex architecture and epigenomic impact of plant T-DNA insertions. PLoS Genet. 15, e1007819. https://doi.org/10.1371/journal.pgen.1007819
  15. Kwon, T. (2016). Mitochondrial porin isoform AtVDAC1 regulates the competence of Arabidopsis thaliana to Agrobacterium-mediated genetic transformation. Mol. Cells 39, 705-713. https://doi.org/10.14348/molcells.2016.0159
  16. Lario, L.D., Ramirez-Parra, E., Gutierrez, C., Spampinato, C.P., and Casati, P. (2013). ANTI-SILENCING FUNCTION1 proteins are involved in ultravioletinduced DNA damage repair and are cell cycle regulated by E2F transcription factors in Arabidopsis. Plant Physiol. 162, 1164-1177. https://doi.org/10.1104/pp.112.212837
  17. Le, S.Y., Davis, C., Konopka, J.B., and Sternglanz, R. (1997). Two new S-phase-specific genes from Saccharomyces cerevisiae. Yeast 13, 1029-1042. https://doi.org/10.1002/(SICI)1097-0061(19970915)13:11<1029::AID-YEA160>3.0.CO;2-1
  18. Min, Y., Frost, J.M., and Choi, Y. (2019). Nuclear chaperone ASF1 is required for gametogenesis in Arabidopsis thaliana. Sci. Rep. 9, 13959. https://doi.org/10.1038/s41598-019-50450-3
  19. Mousson, F., Lautrette, A., Thuret, J.Y., Agez, M., Courbeyrette, G., Amigues, B., Becker, E., Neumann, J.M., Guerois, R., Mann, C., et al. (2005). Structural basis for the interaction of Asf1 with histone H3 and its functional implications. Proc. Natl. Acad. Sci. U. S. A. 102, 5975-5980. https://doi.org/10.1073/pnas.0500149102
  20. Nacry, P., Camilleri, C., Courtial, B., Caboche, M., and Bouchez, D. (1998). Major chromosomal rearrangements induced by T-DNA transformation in Arabidopsis. Genetics 149, 641-650. https://doi.org/10.1093/genetics/149.2.641
  21. Olmedo-Monfil, V., Duran-Figueroa, N., Arteaga-Vazquez, M., Demesa- Arevalo, E., Autran, D., Grimanelli, D., Slotkin, R.K., Martienssen, R.A., and Vielle-Calzada, J.P. (2010). Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464, 628-632. https://doi.org/10.1038/nature08828
  22. O'Malley, R.C. and Ecker, J.R. (2010). Linking genotype to phenotype using the Arabidopsis unimutant collection. Plant J. 61, 928-940. https://doi.org/10.1111/j.1365-313X.2010.04119.x
  23. Park, G.T., Frost, J.M., Park, J.S., Kim, T.H., Lee, J.S., Oh, S.A., Twell, D., Brooks, J.S., Fischer, R.L., and Choi, Y. (2014). Nucleoporin MOS7/Nup88 is required for mitosis in gametogenesis and seed development in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 111, 18393-18398. https://doi.org/10.1073/pnas.1421911112
  24. Preuss, D., Rhee, S.Y., and Davis, R.W. (1994). Tetrad analysis possible in Arabidopsis with mutation of the QUARTET (QRT) genes. Science 264, 1458-1460. https://doi.org/10.1126/science.8197459
  25. Schulz, L.L. and Tyler, J.K. (2006). The histone chaperone ASF1 localizes to active DNA replication forks to mediate efficient DNA replication. FASEB J. 20, 488-490. https://doi.org/10.1096/fj.05-5020fje
  26. Singer, M.S., Kahana, A., Wolf, A.J., Meisinger, L.L., Peterson, S.E., Goggin, C., Mahowald, M., and Gottschling, D.E. (1998). Identification of high-copy disrupters of telomeric silencing in Saccharomyces cerevisiae. Genetics 150, 613-632. https://doi.org/10.1093/genetics/150.2.613
  27. Snustad, D.P. and Simmons, M.J. (2016). Principles of Genetics (Hoboken, NJ: John Wiley & Sons).
  28. Steffen, J.G., Kang, I.H., Macfarlane, J., and Drews, G.N. (2007). Identification of genes expressed in the Arabidopsis female gametophyte. Plant J. 51, 281-292. https://doi.org/10.1111/j.1365-313X.2007.03137.x
  29. Talbert, P.B., Masuelli, R., Tyagi, A.P., Comai, L., and Henikoff, S. (2002). Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14, 1053-1066. https://doi.org/10.1105/tpc.010425
  30. Thomashow, M.F., Nutter, R., Montoya, A.L., Gordon, M.P., and Nester, E.W. (1980). Integration and organization of Ti plasmid sequences in crown gall tumors. Cell 19, 729-739. https://doi.org/10.1016/S0092-8674(80)80049-3
  31. Ulker, B., Peiter, E., Dixon, D.P., Moffat, C., Capper, R., Bouche, N., Edwards, R., Sanders, D., Knight, H., and Knight, M.R. (2008). Getting the most out of publicly available T-DNA insertion lines. Plant J. 56, 665-677. https://doi.org/10.1111/j.1365-313X.2008.03608.x
  32. Weng, M., Yang, Y., Feng, H., Pan, Z., Shen, W.H., Zhu, Y., and Dong, A. (2014). Histone chaperone ASF1 is involved in gene transcription activation in response to heat stress in Arabidopsis thaliana. Plant Cell Environ. 37, 2128-2138. https://doi.org/10.1111/pce.12299
  33. Yadegari, R., Kinoshita, T., Lotan, O., Cohen, G., Katz, A., Choi, Y., Nakashima, K., Harada, J.J., Goldberg, R.B., Fischer, R.L., et al. (2000). Mutations in the FIE and MEA genes that encode interacting polycomb proteins cause parent-of-origin effects on seed development by distinct mechanisms. Plant Cell 12, 2367-2381. https://doi.org/10.1105/tpc.12.12.2367
  34. Zambryski, P., Depicker, A., Kruger, K., and Goodman, H.M. (1982). Tumor induction by Agrobacterium tumefaciens: analysis of the boundaries of T-DNA. J. Mol. Appl. Genet. 1, 361-370.
  35. Zhu, Q.H., Ramm, K., Eamens, A.L., Dennis, E.S., and Upadhyaya, N.M. (2006). Transgene structures suggest that multiple mechanisms are involved in T-DNA integration in plants. Plant Sci. 171, 308-322. https://doi.org/10.1016/j.plantsci.2006.03.019
  36. Zhu, Y., Weng, M., Yang, Y., Zhang, C., Li, Z., Shen, W.H., and Dong, A. (2011). Arabidopsis homologues of the histone chaperone ASF1 are crucial for chromatin replication and cell proliferation in plant development. Plant J. 66, 443-455. https://doi.org/10.1111/j.1365-313X.2011.04504.x

Cited by

  1. Large scale genomic rearrangements in selected Arabidopsis thaliana T-DNA lines are caused by T-DNA insertion mutagenesis vol.22, pp.1, 2020, https://doi.org/10.1186/s12864-021-07877-8