DOI QR코드

DOI QR Code

Convergence Study on Preparation of Anti-aging Peptides from Fish Collagen Hydrolysates

콜라겐 단백가수물을 이용한 항노화 펩타이드 제조에 대한 융합 연구

  • Received : 2020.03.12
  • Accepted : 2020.05.20
  • Published : 2020.05.28

Abstract

An anti-aging peptide was prepared from fish collagen hydrolysate (FCH) by ultrafiltration (MWCO; 1 kDa) and reversed-phased high performance liquid chromatography (RP-HPLC). Its anti-aging properties were evaluated based on the procollagen-synthesizing and MMP-1-inhibiting activities in Hs68 cells. A potent anti-aging peptide (fraction I-I) increased collagen synthesis by 46% and also inhibited MMP-1 secretion by 77%, compared with unpurified FCH. The amino acid sequence of fraction I-I was identified to be Gly-Arg-Arg-Gly-Asn-Lys (GRRGNK; the repeating Gly-X-Y sequence in collagen), and it had a molecular mass of 686.175 Da. It revealed that the anti-aging activity of GRRGNK was mainly due to skin protective effects. These results demonstrated that fish collagen hydrolysate may be a potential source of anti-aging peptides, which could be utilized in various field, including foods, cosmetics, and pharmaceuticals.

본 연구에서는 어류 유래 콜라겐 가수분해물로부터 한외여과법(MWCO; 1 kDa)과 역상액체크로마토그래피를 이용하여 항노화 활성 기능성 펩타이드를 분리, 정제하고자 하였다. 펩타이드의 분리, 정제에 따른 항노화 활성 변화는 Hs68 세포를 사용하여 procollagen 합성능과 MMP-1 저해능을 측정하여 확인하였다. 콜라겐 가수분해물과 비교하여 최종 분리, 정제된 기능성 펩타이드의 procollagen 합성과 MMP-1 저해는 각각 46%와 77% 향상되었다. 또한 기능성 펩타이드의 구조는 Gly-Arg-Arg-Gly-Asn-Lys (GRRGNK; 콜라겐의 기본 구조인 Gly-X-Y sequence와 유사)의 서열을 보였고, 분자량은 686.175 Da으로 분석되었다. 따라서 본 연구에서는 어류 콜라겐 가수분해물로부터 분리한 펩타이드가 식품, 화장품, 의약품 등의 피부노화 지연 효과를 보이는 기능성 원료로 다양하게 사용할 수 있는 가능성을 확인하였다.

Keywords

References

  1. J. H. Chung et al. (2001). Modulation of skin collagen metabolism in aged and photoaged human skin in vivo . Journal of Investigative Dermatology, 117(5), 1218-1224. https://doi.org/10.1046/j.0022-202x.2001.01544.x
  2. A. Veis & A. G. Brownell. (1977). Triple-helix formation on ribosome-bound nascent chains of procollagen: deuterium-hydrogen exchange studies. Proceedings of the National Academy of Sciences, 74(3), 902-905. https://doi.org/10.1073/pnas.74.3.902
  3. J. H. Yim, M. S. Jang, M. Y. Moon, H. Y. Lee, S. C. Kim & N. H. Lee. (2015). Constituents from the branches of Sambucus sieboldiana var. pendula with the properties of collagen synthesis activation. Journal of Applied Pharmaceutical Science, 5(4), 119-122.
  4. K. K. Dong et al. (2008). UV-induced DNA damage initiates release of MMP-1 in human skin. Experimental Dermatology, 17(12), 1037-1044. https://doi.org/10.1111/j.1600-0625.2008.00747.x
  5. J. Varani et al. (2001). Inhibition of Type I procollagen synthesis by damaged collagen in photoaged skin and by collagenase-degraded collagen in vitro . The American Journal of Pathology, 158(3), 931-942. https://doi.org/10.1016/s0002-9440(10)64040-0
  6. C. Alasalvar, F. Shahidi & P. Quantick. (2002). Food and health applications of marine nutraceuticals: a review, in seafoods - Quality, technology and nutraceutical applications, Berlin, Heidelberg : Springer Berlin Heidelberg.
  7. E. Rochima, S. Nadia, D. B. Ibnu, A. Eddy & I. P. Rusky. (2016). Isolation and characterization of collagenase from Bacillus subtilis (Ehrenberg, 1835); AT.CC 6633 for degrading fish skin collagen waste from Cirata Reservoir. Indonesia. Aquatic Procedia, 7(1), 76-84. https://doi.org/10.1016/j.aqpro.2016.07.010
  8. V. Zague, V. Freitas, M. C. Rosa, G. A. Castro, R. G. Jaeger & G. M. Machado-Santelli. (2011). Collagen hydrolysate intake increases skin collagen expression and suppresses matrix metalloproteinase 2 activity. Journal of Medicinal Food, 14(6), 618-624. https://doi.org/10.1089/jmf.2010.0085
  9. M. Tanaka, Y. Koyama & Y. Nomura. (2009). Effects of collagen peptide ingestion on UV-B-induced skin damage. Bioscience, Biotechnology, and Biochemistry, 73(4), 930-932. https://doi.org/10.1271/bbb.80649
  10. S. H. Park, J. K. Lee, J. K. Jeon & H. G. Byun. (2011). Characterization of a collagenase-1 inhibitory peptide purified from skate Dipturus chilensis skin. Korean Journal of Fisheries and Aquatic Sciences, 44(5), 456-463. https://doi.org/10.5657/kfas.2011.0456
  11. L. Wang, X. An, F. Yang, Z. Xin, L. Zhao & Q. Hu. (2008). Isolation and characterisation of collagens from the skin, scale and bone of deep-sea redfish (Sebastes mentella ). Food Chemistry, 108(2), 616-623. https://doi.org/10.1016/j.foodchem.2007.11.017
  12. H. J. Je, Y. K. Han, H. G. Lee & I. Y. Bae. (2019). Anti-aging potential of fish collagen hydrolysates subjected to simulated gastrointestinal digestion and Caco-2 cell permeation. Journal of Applied Biological Chemistry, 62(1), 101-107. https://doi.org/10.3839/jabc.2019.015
  13. J. Kleinkauf-Rocha, L. D. Bobermin, P. M. Machado, C. A. Goncalves, C. Gottfried & A. Quincozes-Santos. (2013). Lipoic acid increases glutamate uptake, glutamine synthetase activity and glutathione content in C6 astrocyte cell line. International Journal of Developmental Neuroscience, 31(3), 165-70. https://doi.org/10.1016/j.ijdevneu.2012.12.006
  14. S. Cho, J. R. Koo & S. B. Kim. (2014). Physicochemical properties of gelatin from jellyfish Rhopilema hispidum. Fisheries and Aquatic Sciences, 17(3), 299-304. https://doi.org/10.5657/FAS.2014.0299
  15. Y. Shigemura et al. (2009). Effect of prolyl-hydroxyproline (Pro-Hyp), a food-derived collagen peptide in human blood, on growth of fibroblasts from mouse skin. Journal of Agricultural and Food Chemistry, 57(2), 444-449. https://doi.org/10.1021/jf802785h
  16. S. Mohan, C. C. Wu, S. Shin & H. L. Fung. (2012). Continuous exposure to L-arginine induces oxidative stress and physiological tolerance in cultured human endothelial cells. Amino acids, 43(3), 1179-1188. https://doi.org/10.1007/s00726-011-1173-y
  17. L. Preciado-Patt, R. Hershkovitz, O. Lider, S. Feiertag, G. Jung & M. Fridkin. (1999). A study of extracellular matrix-cell adhesion peptidic epitopes related to human serum amyloid A (SAA). Letters in Peptide Science, 6(2), 99-108.
  18. J. Heino. (2007). The collagen family members as cell adhesion proteins. BioEssays, 29(10), 1001-1010. https://doi.org/10.1002/bies.20636
  19. T. Badenhorst, D. Svirskis & Z. Wu. (2016). Physicochemical characterization of native glycyl-l-histidyl-l-lysine tripeptide for wound healing and anti-aging: a preformulation study for dermal delivery. Pharmaceutical Development and Technology, 21(2), 152-160. https://doi.org/10.3109/10837450.2014.979944
  20. P. J. Huang, Y. C. Huang, M. F. Su, T. Y. Yang, J. R. Huang & C. P. Jiang. (2007). In vitro observations on the influence of copper peptide aids for the LED photoirradiation of fibroblast collagen synthesis. Photomedicine and Laser Surgery, 25(3), 183-190. https://doi.org/10.1089/pho.2007.2062
  21. J. Liang, X. P. Z. Zhang, N. Wang, J. Wang & Y. Li. (2010). The protective effects of long-term oral administration of marine collagen hydrolysate from Chum Salmon on collagen matrix homeostasis in the chronological aged skin of Sprague-Dawley male rats. Journal of Food Science, 75(8), H230-H238. https://doi.org/10.1111/j.1750-3841.2010.01782.x
  22. J. Z. Williams, N. Abumrad & A. Barbul. (2002). Effect of a specialized amino acid mixture on human collagen deposition. Annals of surgery, 236(3), 369-375. https://doi.org/10.1097/00000658-200209000-00013