DOI QR코드

DOI QR Code

Estimation of ambient PM10 and PM2.5 concentrations in Seoul, South Korea, using empirical models based on MODIS and Landsat 8 OLI imagery

  • 투고 : 2019.09.30
  • 심사 : 2019.12.16
  • 발행 : 2020.03.01

초록

Particulate matter (PM) is regarded as a major threat to public health and safety in urban areas. Despite a variety of efforts to systemically monitor the distribution of PM, the limited amount of sampling sites may not provide sufficient coverage over the areas where the monitoring stations are not located in close proximity. This study examined the capacity of using remotely sensed data to estimate the PM10 and PM2.5 concentrations in Seoul, South Korea. Multiple linear regression models were developed using the multispectral band data from the Moderate-resolution imaging spectro-radiometer equipped on Terra (MODIS) and Operational Land Imager equipped on Landsat 8 (Landsat 8) and meteorological parameters. Compared to MODIS-derived models (r2 = 0.25 for PM10, r2 = 0.30 for PM2.5), the Landsat 8-derived models showed improved model reliabilities (r2 = 0.17 to 0.57 for PM10, r2 = 0.47 to 0.71 for PM2.5). Landsat 8 model-derived PM concentration and ground-truth PM measurements were cross-validated to each other to examine the capability of the models for estimating the PM concentration. The modeled PM concentrations showed a stronger correlation to PM10 (r = 0.41 to 0.75) than to PM2.5 (r = 0.14 to 0.82). Overall, the results indicate that Landsat 8-derived models were more suitable in estimating the PM concentrations. Despite the day-to-day fluctuation in the model reliability, several models showed strong correspondences of the modeled PM concentrations to the PM measurements.

키워드

참고문헌

  1. AirKorea. 2019. Latest hourly ambient air quality data archive. Accessed in https://www.airkorea.or.kr/web/last_amb_hour_data on 6 August 2019. [in Korean]
  2. Chavez PS. 1996. Image-based atmospheric correction - revisited and improved. Photogrammetric Engineering and Remote Sensing 62:1025-1036.
  3. Chen W, Fan A, Yan L. 2017. Performance of MODIS C6 aerosol product during frequent haze-fog events: A case study of Beijing. Remote Sensing 9:496. doi:10.3390/rs9050496.
  4. Chen Y, Han W, Chen S, Tong L. 2014. Estimating ground-level PM2.5 concentration using Landsat 8 in Chengdu, China. Proceedings of SPIE - The International Society for Optical Engineering 9259:925917. doi:10.1117/12.2068886.
  5. IPCC (Intergovernmental Panel on Climate Change). 2014. Climate change 2014: Mitigation of climate change. Contribution of working group III to the fifth assessment report of the Intergovernmental Panel on Climate Change edited by Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlomer S, von Stechow C, Zwickel T, Minx JC. Cambridge University Press, Cambridge, United Kingdom and New York, USA.
  6. KMA (Korean Meteorological Administration). 2019. Meteorological dataset archive. Accessed in https://data.kma.go.kr/ on 5 August 2019. [in Korean]
  7. KOSIS (Korean Statistical Information Service). 2018. Administrative division statistics. Accessed in http://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ZGA17&conn_p-ath=I2 on 12 September 2019. [in Korean]
  8. Kumar N, Chu A, Foster A. 2007. An empirical relationship between PM2.5 and aerosol optical depth in Delhi Metropolitan. Atmospheric Environment 41:4492-4503. https://doi.org/10.1016/j.atmosenv.2007.01.046
  9. Lee S, Park J. 2019. Correlation between urban forest and satellite-borne imagery-based ambient particulate matter across Seoul, South Korea. Journal of Agriculture and Life Science 53:1-11. doi:10.14397/jals.2019.53.6.1.
  10. Levy RC, Mattoo S, Munchak LA, Remer LA, Sayer AM, Patadia F, Hsu NC. 2013. The Collection 6 MODIS aerosol products over land and ocean. Atmospheric Measurement Techniques 6:2989-3034. https://doi.org/10.5194/amt-6-2989-2013
  11. Li R. 2015. Estimating ground-level PM2.5 using fine-resolution satellite data in the megacity of Beijing, China. Aerosol and Air Quality Research 15:1347-1356. doi:10.4209/aaqr.2015.01.0009.
  12. Moran M, Jackson R, Slater P, Teillet P. 1992. Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output. Remote Sensing of Environment 41:169-184. https://doi.org/10.1016/0034-4257(92)90076-V
  13. Munchak LA, Levy RC, Mattoo S, Remer LA, Holben BN, Schafer JS, Hostetler CA, Ferrare RA. 2013. MODIS 3 km aerosol product: Applications over land in an urban/suburban region. Atmospheric Measurement Techniques 6:1747-1759. https://doi.org/10.5194/amt-6-1747-2013
  14. Nadzri O, Mat Jafri MZ, Lim HS. 2010. Estimating particulate matter concentration over arid region using satellite remote sensing: A case study in Makkah, Saudi Arabia. Modern Applied Science 4. Science 4:131. doi:10.5539/mas.v4n11p131.
  15. NASA (National Aeronautics and Space Administration). 2017. Earth science mission profile 1997-2023. Earth Observing System Project Science Office. Accessed in https://eospso.nasa.gov/content/nasas-earth-observingsystem-project-science-office on 11 September 2019.
  16. NIER (National Institute of Environmental Research). 2015. Megacity air pollution studies - Seoul (MAPS-Seoul). Accessed in https://espo.nasa.gov/sites/default/files/document-s/MAPS-Seoul_White%20Paper_26%20Feb%202015_Final.pdf on 20 August 2019. [in Korean]
  17. Remer LA, Kleidman RG, Levy RC, Kaufman YJ, Tanre D, Mattoo S, Martins JV, Ichoku C, Koren I, Yu H, Holben BN. 2008. Global aerosol climatology from the MODIS satellite sensors. Journal of Geophysical Research: Atmospheres 113: D14S07. doi:10.1029/2007JD009661.
  18. Remer LA, Mattoo S, Levy RC, Munchak LA. 2013. MODIS 3 km aerosol product: Algorithm and global perspective. Atmospheric Measurement Techniques Discussions 6:69-112. https://doi.org/10.5194/amtd-6-69-2013
  19. Saleh SAH, Hasan G. 2014. Estimation of PM10 concentration using ground measurements and Landsat 8 OLI satellite image. Journal of Geophysics and Remote Sensing 3:2169. doi:10.4172/2169-0049.1000120.
  20. Seo S, Kim J, Lee H, Jeong U, Kim W, Holben B, Kim SW, Song C, Lim J. 2015. Estimation of PM10 concentrations over Seoul using multiple empirical models with AERONET and MODIS data collected during the DRAGON-Asia campaign. Atmospheric Chemistry and Physics 15:319-334. doi:10.5194/acp-15-319-2015.
  21. Seoul Metropolitan Government. 2019. Seoul city green space geospatial information (datum: ITRF2000). Accessed in http://data.seoul.go.kr/dataList/datasetView.do?infId=OA-13163&srvType=S&serviceKind=1& currentPageNo=1 on 22 August 2019. [in Korean]
  22. Sobrino J, Jimenez-Munoz JC, Paolini L. 2004. Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment 90:434-440. https://doi.org/10.1016/j.rse.2004.02.003
  23. Sun L, Wei J, Bilal M, Tian X, Jia C, Guo Y, Mi X. 2016. Aerosol optical depth retrieval over bright areas using Landsat 8 OLI Images. Remote Sensing 8:23. doi:10.3390/rs8010023.
  24. Tian J, Chen D. 2010. Spectral, spatial, and temporal sensitivity of correlating MODIS aerosol optical depth with ground-based fine particulate matter (PM2.5) across southern Ontario. Canadian Journal of Remote Sensing 36:119-128. https://doi.org/10.5589/m10-033
  25. USGS (United States Geological Survey). 2019. Landsat 8 data users handbook. USGS Landsat Missions. LSDS-1574 version 4.0. Accessed in https://www.usgs.gov/media/files/-landsat-8-data-users-handbook on 8 August 2019.
  26. WHO (World Health Organization). 2016. Ambient air pollution: A global assessment of exposure and burden of disease. World Health Organization. Accessed in https://apps.who.int/iris/handle/10665/250141 on 10 September 2019.
  27. Yun G, Zuo S, Dai S, Song X, Xu C, Liao Y, Zhao P, Chang W, Chen Q, Li Y, Tang J, Man W, Ren Y. 2018. Individual and interactive influences of anthropogenic and ecological factors on forest PM2.5 concentrations at an urban scale. Remote Sensing 10:521. doi:10.3390/rs10040521.

피인용 문헌

  1. 부스팅 기반 기계학습기법을 이용한 지상 미세먼지 농도 산출 vol.37, pp.2, 2020, https://doi.org/10.7780/kjrs.2021.37.2.11