Acknowledgement
This research was supported by Ministry of Land, Infrastructure and Transport of Korean Government (Grant 20CTAP-C143093-03).
References
- Abate, G., Caruso, C., Massimino, M.R. and Maugeri, M. (2008), "Evaluation of shallow foundation settlements by an elasto-plastic kinematic-isotropic hardening numerical model for granular soil", Geomech. Geoeng., 3(1), 27-40. https://doi.org/10.1080/17486020701862174.
- Alpan, I., (1964), "Introductory soil mechanics and foundations / G.B. Sowers, G.F. Sowers", Civ. Eng. Public Work. Rev., 58, 1415-1418. https://doi.org/10.1097/00010694-195111000-0014.
- Anagnostopoulos, A.G., Papadopoulos, B.P. and Kavvadas, M.J. (1991), "Direct estimation of settlements on sand, based on SPT results", Proceedings of the 10th European Conference on Soil Mechacnics and Foundation Engineering, Florence, Italy.
- Anderson, J.B., Townsend, F.C. and Rahelison, L. (2007), "Load testing and settlement prediction of shallow foundation", J. Geotech. Geoenviron. Eng., 133(12), 1494-1502. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:12(1494).
- Arnold, M. (1980), "Prediction of footing settlement on sand", Ground Eng., 13, 40-47.
- Briaud, J.L. and Gibbens, R.M. (1994), "Predicted and measured behavior of five spread footings on sand", Geotech. Sp. Publ., 41, 255.
- Bui, D.K., Nguyen, T., Chou, J.S., Nguyen-Xuan, H. and Ngo, T. D. (2018), "A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete", Constr. Build. Mater., 180, 320-333. https://doi.org/10.1016/j.conbuildmat.2018.05.201.
- Bui, D.K., Nguyen, T.N., Ngo, T.D. and Nguyen-Xuan, H. (2019), "An artificial neural network (ANN) expert system enhanced with the electromagnetism-based firefly algorithm (EFA) for predicting the energy consumption in buildings", Energy, 190, 116370. https://doi.org/10.1016/j.energy.2019.116370.
- Burland, J.B. and Burbidge, M.C. (1985), "Settlement of foundations on sand and gravel", Proc. Inst. Civ. Eng., 78(6), 1325-1381.
- Cheng, M.Y. and Cao M.T. (2014), "Evolutionary multivariate adaptive regression splines for estimating shear strength in reinforced-concrete deep beams", Eng. Appl. Artif. Intell., 28, 86-96. https://doi.org/10.1016/j.engappai.2013.11.001.
- Craven, P. and Wahba, G. (1978), "Smoothing noisy data with spline functions", Numer. Math., 31(4), 377-403. https://doi.org/10.1007/BF01404567.
- Das, B. and Sivakugan, N. (2007), "Settlements of shallow foundations on granular soil - an overview", Int. J. Geotech. Eng., 1(1), 19-29. https://doi.org/10.3328/IJGE.2007.01.01.19-29.
- Das, B.M. (2002), Principles of Foundation Engineering, Cengage Learning, U.S.A.
- Elton, D.J. (1987), "Settlement of footings on sand by CPT data", J. Comput. Civ. Eng., 1(2), 99-113. https://doi.org/10.1061/(ASCE)0887-3801(1987)1:2(99).
- Friedman, J.H. (1991), "Multivariate adaptive regression splines", Ann. Statics, 19(1), 1-67.
- Gandomi, A.H., Alavi, A.H. and Sahab, M.G. (2010), "New formulation for compressive strength of CFRP confined concrete cylinders using linear genetic programming", Mater. Struct., 43(7), 963-983. https://doi.org/10.1617/s11527-009-9559-y.
- Gesoglu, M. and Guneyisi, E. (2007), "Prediction of load-carrying capacity of adhesive anchors by soft computing techniques", Mater. Struct., 40(9), 939-951. https://doi.org/10.1617/s11527-007-9265-6.
- Golafshani, E.M., Rahai, A. and Sebt, M.H. (2015), "Artificial neural network and genetic programming for predicting the bond strength of GFRP bars in concrete", Mater. Struct., 48(5), 1581-1602. https://doi.org/10.1617/s11527-014-0256-0.
- Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization and Machine Learning, 1st Ed., Addison-Wesley Longman Publishing Co., Inc., Boston, Massachusetts, U.S.A.
- Gomes, G.F., de Almeida, F.A., Junqueira, D.M., da Cunha Jr, S. S. and Ancelotti Jr, A.C. (2019), "Optimized damage identification in CFRP plates by reduced mode shapes and GA-ANN methods", Eng. Struct., 181, 111-123. https://doi.org/10.1016/j.engstruct.2018.11.081.
- Harr, M.E. (1966), Foundation and Theoretical Soil Mechanics, McGraw-Hill, New York, U.S.A.
- Holland, J.H. (1975), Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, U Michigan Press, Oxford, England, U.K.
- Iyer, V.H., Mahesh, S., Malpani, R., Sapre, M. and Kulkarni, A.J. (2019), "Adaptive range genetic algorithm: A hybrid optimization approach and its application in the design and economic optimization of shell-and-tube heat exchanger", Eng. Appl. Artif. Intell., 85, 444-461. https://doi.org/10.1016/j.engappai.2019.07.001.
- Jeyepalan, J.K. and Boehm, R. (1986), Procedures for Predicting Settlement in Sands, in Settlement of Shallow Foundations on Cohessionless Soils: Design and Performance, American Society of Civil Engineers, 1-22.
- Koopialipoor, M., Fallah, A., Armaghani, D.J., Azizi, A. and Mohamad, E.T. (2019), "Three hybrid intelligent models in estimating flyrock distance resulting from blasting", Eng. Comput., 35(1), 243-256. https://doi.org/10.1007/s00366-018-0596-4.
- Le-Duc, T., Nguyen, Q.H. and Nguyen-Xuan, H. (2020), "Balancing composite motion optimization", Inform. Sci., 520, 250-270. https://doi.org/10.1016/j.ins.2020.02.013.
- Luat, N.V., Lee, J., Lee, D.H. and Lee, K. (2020b), "GS - MARS method for predicting the ultimate load - carrying capacity of rectangular CFST columns under eccentric loading", Comput. Concrete, 25(1), 1-14. https://doi.org/10.12989/cac.2020.25.1.001.
- Luat, N.V., Lee, K. and Thai, D.K. (2020a), "Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils", Geomech. Eng., 20(5), 385-397. https://doi.org/10.12989/gae.2020.20.5.385.
- Maugeri, M., Castelli, F., Massimino, M.R. and Verona, G. (1998), "Observed and computed settlements of two shallow foundations on sand", J. Geotech. Geoenviron. Eng., 124(7), 595-605. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:7(595).
- Meyerhof, G. (1956), "Penetration tests and bearing capacity of cohesionless soils", J. Soil Mech. Found. Div., 82(1), 1-12.
- Meyerhof, G. (1964), "Shallow foundations", J. Soil Mech. Found. Div., 91, 21-32. https://doi.org/10.1061/JSFEAQ.0000719
- Meyerhof, G. (1974), "General report: State-of-the-art of penetration testing in countries outside Europe", Proceedings of the 1st European Symposium on Penetration Testing, Stockholm, Sweden.
- Mullins, G., Winters, D. and Dapp, S. (2006), "Predicting end bearing capacity of post-grouted drilled shaft in cohesionless soils", J. Geotech. Geoenviron. Eng., 132(4), 478-487. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:4(478).
- Nehdi, M. and Nikopour, H. (2011), "Genetic algorithm model for shear capacity of RC beams reinforced with externally bonded FRP", Mater. Struct., 44(7), 1249-1258. https://doi.org/10.1617/s11527-010-9697-2.
- Pramanik, P. and Maiti, M.K. (2019), "An inventory model for deteriorating items with inflation induced variable demand under two level partial trade credit: A hybrid ABC-GA approach", Eng. Appl. Artif. Intell., 85, 194-207. https://doi.org/10.1016/j.engappai.2019.06.013.
- Qi, C. and Tang, X. (2018), "A hybrid ensemble method for improved prediction of slope stability", Int. J. Numer. Anal. Meth. Geomech., 42(15), 1823-1839. https://doi.org/10.1002/nag.2834.
- Ren, Y. and Bai, G. (2010), "Determination of optimal SVM parameters by using GA/PSO", J. Comput., 5(8), 1160-1168. https://doi.org/10.4304/jcp.5.8.1160-1168.
- Samui, P. (2011), "Multivariate adaptive regression spline applied to friction capacity of driven piles in clay", Geomech. Eng., 3(4), 285-290. https://doi.org/10.12989/gae.2011.3.4.285.
- Samui, P. and Sitharam, T.G. (2008), "Least-square support vector machine applied to settlement of shallow foundations on cohesionless soils", Int. J. Numer. Anal. Meth. Geomech., 32(17), 2033-2043. https://doi.org/10.1002/nag.731.
- Schmertmann, J.H. (1970), "Static cone to compute static settlement over sand", J. Soil Mech. Found. Div., 96(3), 1011-1043. https://doi.org/10.1061/JSFEAQ.0001418
- Schultze, E. and Sherif, G. (1973), "Prediction of settlements from evaluated settlement observations for sand", Proceeding of the 8th International Conference on Soil Mechanics and Foundation Engineering, Moscow, Russia, August.
- Shahin, M., Jaksa, M.B. and Maier, H.R. (2005), "Neural network based stochastic design charts for settlement prediction", Can. Geotech. J., 120, 110-120. https://doi.org/10.1139/T04-096.
- Shahin, M.A. and Jaksa, M.B. (2006), "Pullout capacity of small ground anchors by direct cone penetration test methods and neural networks", Can. Geotech. J., 43(6), 626-637. https://doi.org/10.1139/t06-029.
- Shahin, M.A., Maier, H.R. and Jaksa, M.B., (2002), "Predicting settlement of shallow foundations using neural networks", J. Geotech. Geoenviron. Eng., 128(9), 785-793. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:9(785).
- Sivakugan, N. and Johnson, K. (2004), "Settlement predictions in granular soils: a probabilistic approach", Geotechnique, 54(7), 499-502. https://doi.org/10.1680/geot.2004.54.7.499.
- Tan, C.K. and Duncan, J.M. (1991), "Settlement of footings on sands: Accuracy and reliability", Proceedings of the Geotechnical Engineering Congress, Boulder, Colorado, U.S.A., June.
- Terzaghi, K. and Peck, R.B. (1968), Soil Mechanics in Engineering Practice, John Wiley & Sons, New York, U.S.A.
- Tiachacht, S., Bouazzouni, A., Khatir, S., Abdel Wahab, M., Behtani, A. and Capozucca, R. (2018), "Damage assessment in structures using combination of a modified Cornwell indicator and genetic algorithm", Eng. Struct., 177, 421-430. https://doi.org/10.1016/j.engstruct.2018.09.070.
- Wang, Y., Huang, H., Huang, L. and Zhang, X. (2018), "Source term estimation of hazardous material releases using hybrid genetic algorithm with composite cost functions", Eng. Appl. Artif. Intell., 75, 102-113. https://doi.org/10.1016/j.engappai.2018.08.005.
- Xiang, Y., Goh, A.T.C., Zhang, W. and Zhang, R. (2018), "A multivariate adaptive regression splines model for estimation of maximum wall deflections induced by braced excavation", Geomech. Eng., 14(4), 315-324. https://doi.org/https://doi.org/10.12989/gae.2018.14.4.315.
- Zhang, W. and Goh, A.T.C. (2014), "Multivariate adaptive regression splines model for reliability assessment of serviceability limit state of twin caverns", Geomech. Eng., 7(4), 431-458. https://doi.org/10.12989/gae.2014.7.4.431.
- Zhang, W., Zhang, R. and Goh, A.T.C. (2018), "MARS inverse analysis of soil and wall properties for braced excavations in clays", Geomech. Eng., 16(6), 577-588. https://doi.org/10.12989/gae.2018.16.6.577.
- Zhang, W., Zhang, R., Wang, W., Zhang, F. and Goh, A.T.C. (2019), "A multivariate adaptive regression splines model for determining horizontal wall deflection envelope for braced excavations in clays", Tunn. Undergr. Sp. Technol., 84, 461-471. https://doi.org/10.1016/j.tust.2018.11.046.
Cited by
- Seismic Fragility Assessment of Columns in a Piloti-Type Building Retrofitted with Additional Shear Walls vol.12, pp.16, 2020, https://doi.org/10.3390/su12166530
- Evaluation of geological conditions and clogging of tunneling using machine learning vol.25, pp.1, 2020, https://doi.org/10.12989/gae.2021.25.1.059
- Ultimate axial capacity prediction of CCFST columns using hybrid intelligence models - a new approach vol.40, pp.3, 2021, https://doi.org/10.12989/scs.2021.40.3.461