DOI QR코드

DOI QR Code

Undrained solution for cavity expansion in strength degradation and tresca soils

  • Li, Chao (School of Civil Engineering, Central South University) ;
  • Zou, Jin-feng (School of Civil Engineering, Central South University) ;
  • Sheng, Yu-ming (School of Civil Engineering, Central South University)
  • Received : 2019.05.05
  • Accepted : 2020.05.16
  • Published : 2020.06.25

Abstract

An elastic-plastic solution for cavity expansion problem considering strength degradation, undrained condition and initial anisotropic in-situ stress is established based on the Tresca yield criterion and cavity expansion theory. Assumptions of large-strain for plastic region and small-strain for elastic region are adopted, respectively. The initial in-situ stress state of natural soil mass may be anisotropic caused by consolidation history, and the strength degradation of soil mass is caused by structural damage of soil mass in the process of loading analysis (cavity expansion process). Finally, the published solutions are conducted to verify the suitability of this elastic-plastic solution, and the parametric studies are investigated in order to the significance of this study for in-situ soil test.

Keywords

Acknowledgement

This work was supported by the National Key R&D Program of China (2017YFB1201204). The first author thanks Project 2018zzts188 supported by Innovation Foundation for Postgraduate of the Central South University. The editor's and anonymous reviewer's comments have improved the quality of the study and are also greatly acknowledged.

References

  1. Ahn, H.Y., Oh, D.W. and Lee, Y.J. (2018), "Behaviour of vertically and horizontally loaded pile and adjacent ground affected by tunneling", Geomech. Eng., 15(3), 861-868. https://doi.org/10.12989/gae.2018.15.3.861.
  2. Andersen, K.H. (1980), "Cyclic and static laboratory tests on Drammen clay", J. Geotech. Eng. Div., 106(5), 499-529. https://doi.org/10.1061/AJGEB6.0000957
  3. Cao, L.F., Teh, C.I. and Chang, M.F. (2001), "Undrained cavity expansion in modified cam clay I: Theoretical analysis", Geotechnique, 51(4), 323-334. https://doi.org/10.1680/geot.2001.51.4.323.
  4. Castro, J., Karstunen, M. and Sivasithamparam, N. (2014), "Influence of stone column installation on settlement reduction", Comput. Geotech., 59(3), 87-97. https://doi.org/10.1016/j.compgeo.2014.03.003.
  5. Chen, G.H., Zou, J.F. and Chen, J.Q. (2019a), "Shallow tunnel face stability considering pore water pressure in non-homogeneous and anisotropic soils", Comput. Geotech., 116, 103205. https://doi.org/10.1016/j.compgeo.2019.103205.
  6. Chen, G.H., Zou, J.F., Min, Q., Guo, W.J. and Zhang, T.Z. (2019b), "Face stability analysis of a shallow square tunnel in non-homogeneous soils", Comput. Geotech., 114, 103112. https://doi.org/10.1016/j.compgeo.2019.103112.
  7. Chen, S.L. and Abousleiman, Y.N. (2012), "Exact undrained elasto-plastic solution for cylindrical cavity expansion in modified cam clay soil mass", Geotechnique, 62(5), 447-456. http://doi.org/10.1680/geot.11.P.027.
  8. Chen, S.L. and Abousleiman, Y.N. (2013), "Exact drained solution for cylindrical cavity expansion in modified Cam Clay soil", Geotechnique, 63(6), 510. https://doi.org/10.1680/geot.11.P.088.
  9. Collins, I.F. and Yu, H.S. (1996), "Undrained cavity expansions in critical state soils", Int. J. Numer. Anal. Meth. Geomech., 20(7), 489-516. https://doi.org/10.1002/(SICI)1096-9853(199607)20:7<489::AID-NAG829>3.0.CO;2-V.
  10. Einav, I. and Randolph, M.F. (2005), "Combining upper bound and strain path methods for evaluating penetration resistance", Int. J. Numer. Meth. Eng., 63(14), 1991-2016. https://doi.org/10.1002/nme.1350.
  11. Gibson, R.E. and Anderson, W.F. (1961), "In situ measurement of soil properties with the pressure meter", Civ. Eng. Public Works Rev., 56, 615-618.
  12. Hight, D.W., Bond, A.J. and Legge, J.D. (1992), "Characterization of the Bothkennaar clay: An overview", Geotechnique, 42, 303-347. https://doi.org/10.1680/geot.1992.42.2.303.
  13. Khanmohammadi, M. and Fakharian, K. (2018), "Evaluation of performance of piled-raft foundations on soft clay: A case study", Geomech. Eng., 14(1), 43-50. https://doi.org/10.12989/gae.2018.14.1.043.
  14. Kwon, J., Kim, C., Im, J.C. and Yoo, J.W. (2018), "Effect of performance method of sand compaction piles on the mechanical behavior of reinforced soft clay", Geomech. Eng., 14(2), 175-185. https://doi.org/10.12989/gae.2018.14.2.175.
  15. Li, C. and Zou, J.F. (2019), "Created cavity expansion solution in anisotropic and drained condition based on Cam-Clay model", Geomech. Eng., 19(2), 141-151. https://doi.org/10.12989/gae.2019.19.2.141.
  16. Li, C., Zou, J.F. and Zhou, H. (2019b), "Cavity expansions in k0 consolidated clay", Eur. J. Environ. Civ. Eng., 1-19. https://doi.org/10.1080/19648189.2019.1605937.
  17. Li, L., Li, J., Sun, D.A. and Gong, W. (2017), "Unified solution to drained expansion of a spherical cavity in clay and sand", Int. J. Geomech., 17(8), 04017028. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000909.
  18. Liu, H., Zhou, H., Kong, G., Qin, H. and Zha, Y. (2017), "High pressure jet-grouting column installation effect in soft soil: Theoretical model and field application", Comput. Geotech., 88, 74-94. https://doi.org/10.1016/j.compgeo.2017.03.005.
  19. Manandhar, S. and Yasufuku, N. (2012), "Analytical model for the end-bearing capacity of tapered piles using cavity expansion theory", Adv. Civ. Eng. https://doi.org/10.1155/2012/749540.
  20. Manandhar, S. and Yasufuku, N. (2013), "Vertical bearing capacity of tapered piles in sands using cavity expansion theory", Soils Found., 53(6), 853-867. https://doi.org/10.1016/j.sandf.2013.10.005.
  21. Manandhar, S., Yasufuku, N. and Omine, K. (2012), "Application of cavity expansion theory for evaluation of skin friction of tapered piles in sands", Int. J. Geo-Eng., 4(3), 5-17.
  22. Merifield, R.S., Sloan, S.W. and Yu, H.S. (2001), "Stability of plate anchors in undrained clay", Geotechnique, 51, 141-153. https://doi.org/10.1680/geot.2001.51.2.141.
  23. Mo, P.Q. and Yu, H.S. (2017), "Undrained cavity expansion analysis with a unified state parameter model for clay and sand", Geotechnique, 67(6), 503-515. https://doi.org/10.1680/jgeot.15.P.261.
  24. Mo, P.Q., Marshall, A.M. and Yu, H.S. (2014), "Elastic-plastic solutions for expanding cavities embedded in two different cohesive-frictional materials", Int. J. Numer. Meth. Eng., 38, 961-977. https://doi.org/10.1002/nag.2288.
  25. Mo, P.Q., Marshall, A.M. and Yu, H.S. (2017), "Interpretation of cone penetration test data in layered soils using cavity expansion analysis", J. Geotech. Geoenviron. Eng., 143, 04016084. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001577.
  26. Nash, D.F.T., Powell, J.J.M. and Lloyd, I.M. (1992), "Initial investigations of the soft clay test site at Bothkennar", Geotechnique, 42, 163-181. https://doi.org/10.1680/geot.1992.42.2.163.
  27. Qian, Z.H., Zou, J.F., Tian, J. and Pan, Q.J. (2020), "Estimations of active and passive earth thrusts of non-homogeneous frictional soils using a discretisation technique", Comput. Geotech., 119, 103366. https://doi.org/10.1016/j.compgeo.2019.103366.
  28. Randolph, M.F., Carter, J.P. and Wroth, C.P. (1979), "Driven piles in clay-the effects of installation and subsequent consolidation", Geotechnique, 29(4), 361-393. https://doi.org/10.1680/geot.1979.29.4.361.
  29. Shuttle, D. (2007), "Cylindrical cavity expansion and contraction in Tresca soil", Geotechnique, 57(3), 305-308. https://doi.org/10.1680/geot.2007.57.3.305.
  30. Sivasithamparam, N. and Castro, J. (2020), "Undrained cylindrical cavity expansion in clays with fabric anisotropy and structure: Theoretical solution", Comput. Geotech., 120, 103386. https://doi.org/10.1016/j.compgeo.2019.103386.
  31. Sivasithamparam, N. and Castro, J. (2018), "Undrained expansion of a cylindrical cavity in clays with fabric anisotropy: Theoretical solution", Acta Geotechnica, 13(3), 729-746. https://doi.org/10.1007/s11440-017-0587-4.
  32. Teh, C.I. and Houlsby, G.T. (1991), "Analytical study of the cone penetration test in clay", Geotechnique, 41(1), 17-34. https://doi.org/10.1680/geot.1991.41.1.17.
  33. Tian, P., Zhou, H. and Yin, F. (2018), "Elastic-perfectly plastic analytic solution for cylindrical cavity expansion considering rate-dependent effect and strength degradation of clay", J. Central South Univ. Sci. Technol., 49(6). https://doi.org/10.11817/j.issn.1672-7207.2018.06.024.
  34. Vesic, A.S. (1972), "Expansion of cavities in infinite soil mass", J. Soil Mech. Found. Div., 98(3), 265-290. https://doi.org/10.1061/JSFEAQ.0001740
  35. Wang, S., Yin, S. and Wu, Z. (2012a), "Strain-softening analysis of a spherical cavity", Int. J. Numer. Anal. Meth. Geomech., 36(2), 182-202. https://doi.org/10.1002/nag.1002.
  36. Wang, S., Yin, X., Tang, H. and Ge, X. (2012b), "A new approach for analyzing circular tunnel in strain-softening rock masses", Int. J. Rock Mech. Min. Sci., 47(1), 170-178. https://doi.org/10.1016/j.ijrmms.2009.02.011
  37. Wijewickreme, D. and Weerasekara, L. (2015), "Analytical modeling of field axial pullout tests performed on buried extensible pipes", Int. J. Geomech., 15, 04014044. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000388.
  38. Xiao, Y. and Liu, H. (2016a), "Elastoplastic constitutive model for rockfill materials considering particle breakage", Int. J. Geomech., 17(1), 04016041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000388.
  39. Xiao, Y., Liu, H., Ding, X., Chen, Y., Jiang, J. and Zhang, W. (2016b), "Influence of particle breakage on critical state line of rockfill material", Int. J. Geomech., 16(1), 04015031. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000538.
  40. Yu, H.S. and Carter, J.P. (2002), "Rigorous similarity solutions for cavity expansion in cohesive-frictional soils", Int. J. Geomech., 2(2), 233-258. https://doi.org/10.1061/(ASCE)1532-3641(2002)2:2(233).
  41. Yu, H.S. and Houlsby, G.T. (1991), "Finite cavity expansion in dilatant soils: loading analysis", Geotechnique, 42(4), 649-654. https://doi.org/10.1680/geot.1991.41.2.173.
  42. Yu, H.S. and Rowe, R.K. (1999), "Plasticity solutions for soil behaviour around contracting cavities and tunnels", Int. J. Numer. Anal. Meth. Geomech., 23, 1245-1279. https://doi.org/10.1002/(SICI)1096-9853(199910)23:12<1245::AID-NAG30>3.0.CO;2-W.
  43. Zhang, J. and Li, L. (2020), "Similarity solution for undrained cylindrical cavity contraction in anisotropic modified Cam-clay model soils", Comput. Geotech., 120, 103405. https://doi.org/10.1016/j.compgeo.2019.103405.
  44. Zhou, H. and Randolph, M.F. (2007), "Computational techniques and shear band development for cylindrical and spherical penetrometers in strain-softening clay", Int. J. Geomech., 7(4), 287-295. https://doi.org/10.1061/(ASCE)1532-3641(2007)7:4(287).
  45. Zhou, H., Kong, G., Liu, H. and Laloui, L. (2018), "Similarity solution for cavity expansion in thermoplastic soil", Int. J. Numer. Anal. Meth. Geomech., 42(2), 274-294. https://doi.org/10.1002/nag.2724.
  46. Zou, J.F. and Xia, Z.Q. (2017), "Closed-form solution for cavity expansion in strain-softening and undrained soil mass based on the unified strength failure criterion", Int. J. Geomech., 17(9), 04017046. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000927.
  47. Zou, J.F., Chen, K.F. and Pan, Q.J. (2017), "Influences of seepage force and out-of-plane stress on cavity contracting and tunnel opening", Geomech. Eng., 13(6), 907-928. https://doi.org/10.12989/gae.2017.13.6.907.
  48. Zou, J.F., Xia, Z.Q. and Dan, H.C. (2016), "Theoretical solutions for displacement and stress of a circular opening reinforced by grouted rock bolt", Geomech. Eng., 11(3), 439-455. https://doi.org/10.12989/gae.2016.11.3.439.