DOI QR코드

DOI QR Code

Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM

  • Fenjan, Raad M. (Al-Mustansiriah University, Engineering Collage) ;
  • Moustafa, Nader M. (Al-Mustansiriah University, Engineering Collage) ;
  • Faleh, Nadhim M. (Al-Mustansiriah University, Engineering Collage)
  • 투고 : 2019.11.03
  • 심사 : 2020.05.01
  • 발행 : 2020.05.25

초록

In the present research, differential quadrature (DQ) method has been utilized for investigating free vibrations of porous functionally graded (FG) micro/nano beams in thermal environments. The exact location of neutral axis in FG material has been assumed where the material properties are described via porosity-dependent power-law functions. A scale factor related to couple stresses has been employed for describing size effect. The formulation of scale-dependent beam has been presented based upon a refined beam theory needless of shear correction factors. The governing equations and the associated boundary conditions have been established via Hamilton's rule and then they are solved implementing DQ method. Several graphs are provided which emphasis on the role of porosity dispersion type, porosity volume, temperature variation, scale factor and FG material index on free vibrational behavior of small scale beams.

키워드

과제정보

The authors would like to thank Mustansiriyah university (www.uomustansiriyah.edu.iq) Baghdad-Iraq for its support in the present work.

참고문헌

  1. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., Int. J., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175
  2. Akgoz, B. and Civalek, O . (2014), "Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium", Int. J. Eng. Sci., 85, 90-104. https://doi.org/10.1016/j.ijengsci.2014.08.011
  3. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
  4. Attia, M.A. and Rahman, A.A.A. (2018), "On vibrations of functionally graded viscoelastic nanobeams with surface effects", Int. J. Eng. Sci., 127, 1-32. https://doi.org/10.1016/j.ijengsci.2018.02.005
  5. Ayache, B., Bennai, R., Fahsi, B., Fourn, H., Atmane, H.A. and Tounsi, A. (2018), "Analysis of wave propagation and free vibration of functionally graded porous material beam with a novel four variable refined theory", Earthq. Struct., Int. J., 15(4), 369-382. https://doi.org/10.12989/eas.2018.15.4.369
  6. Barretta, R., Canadija, M., Luciano, R. and de Sciarra, F.M. (2018), "Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams", Int. J. Eng. Sci., 126, 53-67. https://doi.org/10.1016/j.ijengsci.2018.02.012
  7. Belabed, Z., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., Int. J., 14(2), 103-115. https://doi.org/10.12989/eas.2018.14.2.103
  8. Benadouda, M., Atmane, H.A., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2017), "An efficient shear deformation theory for wave propagation in functionally graded material beams with porosities", Earthq. Struct., Int. J., 13(3), 255-265. https://doi.org/10.12989/eas.2017.13.3.255
  9. Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2019), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., Int. J., 6(4), 339-356. https://doi.org/10.12989/anr.2018.6.4.339
  10. Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., Int. J., 3(1), 29-37. https://doi.org/10.12989/anr.2015.3.1.029
  11. Castrucci, P. (2014), "Carbon nanotube/silicon hybrid heterojunctions for photovoltaic devices", Adv. Nano Res., Int. J., 2(1), 23-56. https://doi.org/10.12989/anr.2014.2.1.023
  12. Chemi, A., Heireche, H., Zidour, M., Rakrak, K. and Bousahla, A.A. (2015)", Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity", Adv. Nano Res., Int. J., 3(4), 193-206. https://doi.org/10.12989/anr.2015.3.4.193
  13. Civalek, O . and Demir, C . (2016), "A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method", Appl. Mathe. Computat., 289, 335-352. https://doi.org/10.1016/j.amc.2016.05.034
  14. Fernandez-Saez, J., Zaera, R., Loya, J.A. and Reddy, J.N. (2016), "Bending of Euler-Bernoulli beams using Eringen's integral formulation: a paradox resolved", Int. J. Eng. Sci., 99, 107-116. https://doi.org/10.1016/j.ijengsci.2015.10.013
  15. Hadji, L., Daouadji, T.H. and Bedia, E.A. (2016), "Dynamic behavior of FGM beam using a new first shear deformation theory", Earthq. Struct., Int. J., 10(2), 451-461. https://doi.org/10.12989/eas.2016.10.2.451
  16. Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2012), "Nonlinear free vibration of size-dependent functionally graded microbeams", Int. J. Eng. Sci., 50(1), 256-267. https://doi.org/10.1016/j.ijengsci.2010.12.008
  17. Kiani, Y. and Eslami, M.R. (2013), "An exact solution for thermal buckling of annular FGM plates on an elastic medium", Compos. Part B: Eng., 45(1), 101-110. https://doi.org/10.1016/j.compositesb.2012.09.034
  18. Liu, C., Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2013), "Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory", Compos. Struct., 106, 167-174. https://doi.org/10.1016/j.compstruct.2013.05.031
  19. Lu, C.F., Lim, C.W. and Chen, W.Q. (2009), "Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory", Int. J. Solids Struct., 46(5), 1176-1185. https://doi.org/10.1016/j.ijsolstr.2008.10.012
  20. Mahesh, V. and Kattimani, S. (2019), "Finite element simulation of controlled frequency response of skew multiphase magnetoelectro-elastic plates", J. Intel. Mater. Syst. Struct., 30(12), 1757-1771. https://doi.org/10.1177/1045389X19843674
  21. Mahesh, V., Sagar, P.J. and Kattimani, S. (2018), "Influence of coupled fields on free vibration and static behavior of functionally graded magneto-electro-thermo-elastic plate", J. Intel. Mater. Syst. Struct., 29(7), 1430-1455. https://doi.org/10.1177/1045389X17740739
  22. Mahesh, V., Kattimani, S., Harursampath, D. and Trung, N.T. (2019), "Coupled evaluation of the free vibration characteristics of magneto-electro-elastic skew plates in hygrothermal environment", Smart Struct. Syst., Int. J., 24(2), 267-292. https://doi.org/10.12989/sss.2019.24.2.267
  23. Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A. and Bedia, E.A.A. (2018), "On the effect of the micromechanical models on the free vibration of rectangular FGM plate resting on elastic foundation", Earthq. Struct., Int. J., 14(2), 117-128. https://doi.org/10.12989/eas.2018.14.2.117
  24. Safa, A., Hadji, L., Bourada, M. and Zouatnia, N. (2019), "Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory", Earthq. Struct., Int. J., 17(3), 329-336. https://doi.org/10.12989/eas.2019.17.3.329
  25. She, G.L., Yan, K.M., Zhang, Y.L., Liu, H.B. and Ren, Y.R. (2018), "Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory", Eur. Phys. J. Plus, 133(9), 368. https://doi.org/10.1140/epjp/i2018-12196-5
  26. She, G.L., Jiang, X.Y. and Karami, B. (2019), "On thermal snapbuckling of FG curved nanobeams", Mater. Res. Express, 6, 115008. https://doi.org/10.1088/2053-1591/ab44f1
  27. Simsek, M. and Kocaturk, T. (2009), "Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load", Compos. Struct., 90(4), 465-473. https://doi.org/10.1016/j.compstruct.2009.04.024
  28. Simsek, M. and Reddy, J.N. (2013), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci, 64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002
  29. Tounsi, A., Benguediab, S., Adda, B., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., Int. J., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001
  30. Vinyas, M. (2020a), "Computational Analysis of Smart Magneto-Electro-Elastic Materials and Structures: Review and Classification", Arch. Computat. Methods Eng., 1-44. https://doi.org/10.1007/s11831-020-09406-4
  31. Vinyas, M. (2020b), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044
  32. Vinyas, M. (2020c), "Interphase effect on the controlled frequency response of three-phase smart magneto-electro-elastic plates embedded with active constrained layer damping: FE study", Mater. Res. Express, 6(12), 125707. https://doi.org/10.1088/2053-1591/ab6649
  33. Vinyas, M. and Kattimani, S.C. (2017a), "A finite element based assessment of static behavior of multiphase magneto-electroelastic beams under different thermal loading", Struct. Eng. Mech., Int. J., 62(5), 519-535. https://doi.org/10.12989/sem.2017.62.5.519
  34. Vinyas, M. and Kattimani, S.C. (2017b), "Static analysis of stepped functionally graded magneto-electro-elastic plates in thermal environment: a finite element study", Compos. Struct., 178, 63-86. https://doi.org/10.1016/j.compstruct.2017.06.068
  35. Vinyas, M. and Kattimani, S.C. (2017c), "Hygrothermal analysis of magneto-electro-elastic plate using 3D finite element analysis", Compos. Struct., 180, 617-637. https://doi.org/10.1016/j.compstruct.2017.08.015
  36. Vinyas, M. and Kattimani, S.C. (2017d), "A 3D finite element static and free vibration analysis of magneto-electro-elastic beam", Coupl. Syst. Mech., Int. J., 6(4), 465-485. https://doi.org/10.12989/csm.2017.6.4.465
  37. Vinyas, M. and Kattimani, S.C. (2018), "Investigation of the effect of BaTiO3/CoFe2O4 particle arrangement on the static response of magneto-electro-thermo-elastic plates", Compos. Struct., 185, 51-64. https://doi.org/10.1016/j.compstruct.2017.10.073
  38. Vinyas, M., Sandeep, A.S., Nguyen-Thoi, T., Ebrahimi, F. and Duc, D.N. (2019a), "A finite element-based assessment of free vibration behaviour of circular and annular magneto-electroelastic plates using higher order shear deformation theory", J. Intel. Mater. Syst. Struct., 30(16), 2478-2501. https://doi.org/10.1177/1045389X19862386
  39. Vinyas, M., Nischith, G., Loja, M.A.R., Ebrahimi, F. and Duc, N.D. (2019b), "Numerical analysis of the vibration response of skew magneto-electro-elastic plates based on the higher-order shear deformation theory", Compos. Struct., 214, 132-142. https://doi.org/10.1016/j.compstruct.2019.02.010
  40. Vinyas, M., Harursampath, D. and Nguyen-Thoi, T. (2019c), "Influence of active constrained layer damping on the coupled vibration response of functionally graded magneto-electro-elastic plates with skewed edges", Defence Technology. [In press] https://doi.org/10.1016/j.dt.2019.11.016
  41. Vinyas, M., Harursampath, D. and Thoi, T.N. (2020), "A higher order coupled frequency characteristics study of smart magnetoelectro-elastic composite plates with cut-outs using finite element methods", Defence Technol. https://doi.org/10.1016/j.dt.2020.02.009
  42. Wang, K.F. and Wang, B.L. (2011), "Vibration of nanoscale plates with surface energy via nonlocal elasticity", Physica E: Lowdimens. Syst. Nanostruct., 44(2), 448-453. https://doi.org/10.1016/j.physe.2011.09.019
  43. Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002
  44. Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
  45. Youcef, D.O., Kaci, A., Houari, M.S.A., Tounsi, A., Benzair, A. and Heireche, H. (2015), "On the bending and stability of nanowire using various HSDTs", Adv. Nano Res., Int. J., 3(4), 177-191. https://doi.org/10.12989/anr.2015.3.4.177
  46. Zouatnia, N. and Hadji, L. (2019), "Effect of the micromechanical models on the bending of FGM beam using a new hyperbolic shear deformation theory", Earthq. Struct., Int. J., 16(2), 177-183. https://doi.org/10.12989/eas.2019.16.2.177

피인용 문헌

  1. Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory vol.26, pp.5, 2020, https://doi.org/10.12989/cac.2020.26.5.439
  2. Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation vol.38, pp.1, 2020, https://doi.org/10.12989/scs.2021.38.1.001
  3. Temperature jump and concentration slip effects on bioconvection past a vertical porous plate in the existence of nanoparticles and gyrotactic microorganism with inclined MHD vol.11, pp.1, 2020, https://doi.org/10.12989/anr.2021.11.1.0127
  4. An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells vol.40, pp.2, 2020, https://doi.org/10.12989/scs.2021.40.2.307