DOI QR코드

DOI QR Code

Modal analysis of viscoelastic nanorods under an axially harmonic load

  • Akbas, Seref D. (Department of Civil Engineering, Bursa Technical University, Yildirim Campus)
  • Received : 2019.05.31
  • Accepted : 2020.01.28
  • Published : 2020.05.25

Abstract

Axially damped forced vibration responses of viscoelastic nanorods are investigated within the frame of the modal analysis. The nonlocal elasticity theory is used in the constitutive relation of the nanorod with the Kelvin-Voigt viscoelastic model. In the forced vibration problem, a cantilever nanorod subjected to a harmonic load at the free end of the nanorod is considered in the numerical examples. By using the modal technique, the modal expressions of the viscoelastic nanorods are presented and solved exactly in the nonlocal elasticity theory. In the numerical results, the effects of the nonlocal parameter, damping coefficient, geometry and dynamic load parameters on the dynamic responses of the viscoelastic nanobem are presented and discussed. In addition, the difference between the nonlocal theory and classical theory is investigated for the damped forced vibration problem.

Keywords

References

  1. Adhikari, S., Murmu, T. and McCarthy, M.A. (2014), "Frequency domain analysis of nonlocal rods embedded in an elastic medium", Physica E: Low-dimens. Syst. Nanostruct., 59, 33-40. https://doi.org/10.1016/j.physe.2013.11.001
  2. Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., Int. J., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125
  3. Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., Int. J., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579
  4. Akbas, S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X
  5. Akbas S.D. (2017b), "Static, Vibration, and Buckling Analysis of Nanobeams", Nanomech., InTech, pp.123-137. https://doi.org/10.5772/67973
  6. Akbas, S.D. (2017c), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009
  7. Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039
  8. Akbas, S.D. (2018b), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 392. https://doi.org/10.1007/s40430-018-1315-1
  9. Akbas, S.D. (2018c), "Bending of a Cracked Functionally Graded Nanobeam", Adv. Nano Res., Int. J., 6(3), 219-242. https://doi.org/10.12989/anr.2018.6.3.219
  10. Akbas, S.D. (2019a), "Axially Forced Vibration Analysis of Cracked a Nanorod", J. Computat. Appl. Mech., 5(2), 477-485. https://doi.org/10.22059/JCAMECH.2019.281285.392
  11. Akbas, S.D. (2019b), "Longitudinal Forced Vibration Analysis of Porous A Nanorod", Muhendislik Bilimleri ve Tasarim Dergisi, 7(4), 736-743. https://doi.org/10.21923/jesd.553328
  12. Akgoz, B. and Civalek, O . (2014), "Longitudinal vibration analysis for microbars based on strain gradient elasticity theory", J. Vib. Control, 20(4), 606-616. https://doi.org/10.1177/1077546312463752
  13. Chang, T.P. (2016), "Nonlinear free vibration analysis of nanobeams under magnetic field based on nonlocal elasticity theory", J. Vibroeng., 18(3), 1912-1919. https://doi.org/10.21595/jve.2015.16751
  14. Ebrahimi, F. and Salari, E. (2018), "Effect of non-uniform temperature distributions on nonlocal vibration and buckling of inhomogeneous size-dependent beams", Adv. Nano Res., Int. J., 6(4), 377-397. https://doi.org/10.12989/anr.2018.6.4.377
  15. Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., Int. J., 4(1), 51-64. https://doi.org/10.12989/anr.2016.4.1.051
  16. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
  17. Ghayesh, M.H. (2018), "Mechanics of tapered AFG sheardeformable microbeams", Microsyst. Technol., 24(4), 1743-1754. https://doi.org/10.1007/s00542-018-3764-y
  18. Hadji, L., Zouatnia, N., Meziane, M.A.A. and Kassoul, A. (2017), "A simple quasi-3D sinusoidal shear deformation theory with stretching effect for carbon nanotube-reinforced composite beams resting on elastic foundation", Earthq. Struct., Int. J., 13(5), 509-518. https://doi.org/10.12989/eas.2017.13.5.509
  19. Jena, S.K. and Chakraverty, S. (2018), "Free vibration analysis of Euler-Bernoulli nanobeam using differential transform method", Int. J. Computat. Mater. Sci. Eng., 7(3), 1850020. https://doi.org/10.1142/S2047684118500203
  20. Kumar, B.R. (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano Res., Int. J., 6(2), 135-145. https://doi.org/10.12989/anr.2018.6.2.135
  21. Li, L., Hu, Y. and Li, X. (2016), "Longitudinal vibration of sizedependent rods via nonlocal strain gradient theory", Int. J. Mech. Sci., 115, 135-144. https://doi.org/10.1016/j.ijmecsci.2016.06.011
  22. Martin, O. (2019), "Nonlocal effects on the dynamic analysis of a viscoelastic nanobeam using a fractional Zener model", Appl. Mathe. Model., 73, 637-650. https://doi.org/10.1016/j.apm.2019.04.029
  23. Pavlovic, I.R., Pavlovic, R. and Janevski, G. (2019), "Dynamic stability and instability of nanobeams based on the higher-order nonlocal strain gradient theory", Quart. J. Mech. Appl. Mathe., 72(2), 157-178. https://doi.org/10.1093/qjmam/hby024
  24. Wu, C.P., Chen, Y.H., Hong, Z.L. and Lin, C.H. (2018), "Nonlinear vibration analysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., Int. J., 6(2), 163-182. https://doi.org/10.12989/anr.2018.6.2.163
  25. Xu, X.J., Zheng, M.L. and Wang, X.C. (2017), "On vibrations of nonlocal rods: Boundary conditions, exact solutions and their asymptotics", Int. J. Eng. Sci., 119, 217-231. https://doi.org/10.1016/j.ijengsci.2017.06.025

Cited by

  1. Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory vol.37, pp.6, 2020, https://doi.org/10.12989/scs.2020.37.6.695
  2. Static analysis of cutout microstructures incorporating the microstructure and surface effects vol.38, pp.5, 2020, https://doi.org/10.12989/scs.2021.38.5.583
  3. Effect of suction on flow of dusty fluid along exponentially stretching cylinder vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.263
  4. On the free vibration response of laminated composite plates via FEM vol.39, pp.2, 2020, https://doi.org/10.12989/scs.2021.39.2.149
  5. Propagation of waves with nonlocal effects for vibration response of armchair double-walled CNTs vol.11, pp.2, 2020, https://doi.org/10.12989/anr.2021.11.2.183