References
- Adhikari, S., Murmu, T. and McCarthy, M.A. (2014), "Frequency domain analysis of nonlocal rods embedded in an elastic medium", Physica E: Low-dimens. Syst. Nanostruct., 59, 33-40. https://doi.org/10.1016/j.physe.2013.11.001
- Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., Int. J., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125
- Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., Int. J., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579
- Akbas, S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X
- Akbas S.D. (2017b), "Static, Vibration, and Buckling Analysis of Nanobeams", Nanomech., InTech, pp.123-137. https://doi.org/10.5772/67973
- Akbas, S.D. (2017c), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009
- Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039
- Akbas, S.D. (2018b), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 392. https://doi.org/10.1007/s40430-018-1315-1
- Akbas, S.D. (2018c), "Bending of a Cracked Functionally Graded Nanobeam", Adv. Nano Res., Int. J., 6(3), 219-242. https://doi.org/10.12989/anr.2018.6.3.219
- Akbas, S.D. (2019a), "Axially Forced Vibration Analysis of Cracked a Nanorod", J. Computat. Appl. Mech., 5(2), 477-485. https://doi.org/10.22059/JCAMECH.2019.281285.392
- Akbas, S.D. (2019b), "Longitudinal Forced Vibration Analysis of Porous A Nanorod", Muhendislik Bilimleri ve Tasarim Dergisi, 7(4), 736-743. https://doi.org/10.21923/jesd.553328
- Akgoz, B. and Civalek, O . (2014), "Longitudinal vibration analysis for microbars based on strain gradient elasticity theory", J. Vib. Control, 20(4), 606-616. https://doi.org/10.1177/1077546312463752
- Chang, T.P. (2016), "Nonlinear free vibration analysis of nanobeams under magnetic field based on nonlocal elasticity theory", J. Vibroeng., 18(3), 1912-1919. https://doi.org/10.21595/jve.2015.16751
- Ebrahimi, F. and Salari, E. (2018), "Effect of non-uniform temperature distributions on nonlocal vibration and buckling of inhomogeneous size-dependent beams", Adv. Nano Res., Int. J., 6(4), 377-397. https://doi.org/10.12989/anr.2018.6.4.377
- Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., Int. J., 4(1), 51-64. https://doi.org/10.12989/anr.2016.4.1.051
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Ghayesh, M.H. (2018), "Mechanics of tapered AFG sheardeformable microbeams", Microsyst. Technol., 24(4), 1743-1754. https://doi.org/10.1007/s00542-018-3764-y
- Hadji, L., Zouatnia, N., Meziane, M.A.A. and Kassoul, A. (2017), "A simple quasi-3D sinusoidal shear deformation theory with stretching effect for carbon nanotube-reinforced composite beams resting on elastic foundation", Earthq. Struct., Int. J., 13(5), 509-518. https://doi.org/10.12989/eas.2017.13.5.509
- Jena, S.K. and Chakraverty, S. (2018), "Free vibration analysis of Euler-Bernoulli nanobeam using differential transform method", Int. J. Computat. Mater. Sci. Eng., 7(3), 1850020. https://doi.org/10.1142/S2047684118500203
- Kumar, B.R. (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano Res., Int. J., 6(2), 135-145. https://doi.org/10.12989/anr.2018.6.2.135
- Li, L., Hu, Y. and Li, X. (2016), "Longitudinal vibration of sizedependent rods via nonlocal strain gradient theory", Int. J. Mech. Sci., 115, 135-144. https://doi.org/10.1016/j.ijmecsci.2016.06.011
- Martin, O. (2019), "Nonlocal effects on the dynamic analysis of a viscoelastic nanobeam using a fractional Zener model", Appl. Mathe. Model., 73, 637-650. https://doi.org/10.1016/j.apm.2019.04.029
- Pavlovic, I.R., Pavlovic, R. and Janevski, G. (2019), "Dynamic stability and instability of nanobeams based on the higher-order nonlocal strain gradient theory", Quart. J. Mech. Appl. Mathe., 72(2), 157-178. https://doi.org/10.1093/qjmam/hby024
- Wu, C.P., Chen, Y.H., Hong, Z.L. and Lin, C.H. (2018), "Nonlinear vibration analysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., Int. J., 6(2), 163-182. https://doi.org/10.12989/anr.2018.6.2.163
- Xu, X.J., Zheng, M.L. and Wang, X.C. (2017), "On vibrations of nonlocal rods: Boundary conditions, exact solutions and their asymptotics", Int. J. Eng. Sci., 119, 217-231. https://doi.org/10.1016/j.ijengsci.2017.06.025
Cited by
- Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory vol.37, pp.6, 2020, https://doi.org/10.12989/scs.2020.37.6.695
- Static analysis of cutout microstructures incorporating the microstructure and surface effects vol.38, pp.5, 2020, https://doi.org/10.12989/scs.2021.38.5.583
- Effect of suction on flow of dusty fluid along exponentially stretching cylinder vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.263
- On the free vibration response of laminated composite plates via FEM vol.39, pp.2, 2020, https://doi.org/10.12989/scs.2021.39.2.149
- Propagation of waves with nonlocal effects for vibration response of armchair double-walled CNTs vol.11, pp.2, 2020, https://doi.org/10.12989/anr.2021.11.2.183