DOI QR코드

DOI QR Code

Optical Fiber-Based Hybrid Nerve Measurement System for Static and Dynamic Behavior of Structures

구조물의 정적 및 동적 거동 모니터링을 위한 광섬유 기반 하이브리드 신경망 계측 시스템

  • 박영수 (한국건설기술연구원 인프라안전연구본부) ;
  • 송광용 (중앙대학교 물리학과) ;
  • 진승섭 (한국건설기술연구원 노후인프라센터) ;
  • 박영환 (한국건설기술연구원 인프라안전연구본부) ;
  • 김성태 (한국건설기술연구원 인프라안전연구본부)
  • Received : 2020.01.07
  • Accepted : 2020.02.25
  • Published : 2020.04.30

Abstract

Various studies have been conducted on the structural health monitoring using optical fiber. Optical fibers can be used to measure multiple and distributed strain. Among the optical fiber sensors, FBG sensor has advantages of dynamic response measurement and high precision, but the number of measurement points is limited. Distributed fiber sensors, represented by distributed Brillouin sensors, usually have more than 1000 measurement points, but the low sampling rate makes dynamic measurements impossible. In this study, a hybrid nerve sensor system using only the advantages of the FBG sensor and the distributed Brillouin sensor has been proposed. Laboratory experiments were performed to verify the proposed system, and the accuracy and reproducibility were verified by comparing with commercial sensors. Applying the proposed system, dynamic response ambient measurements are used to evaluate the global state of the structure. When an abnormal condition is detected, the local condition of the structure is evaluated by static response measurement using the distributed measurement system. The proposed system can be used for efficient structural health monitoring.

광섬유를 이용한 구조물 건전도 모니터링은 다양한 연구가 이루어졌다. 광섬유는 다중 및 분포로 변형률을 계측 할 수 있다. 광섬유 센서 중, FBG 센서는 동적 응답 계측과 정밀도가 높은 장점이 있지만, 계측 포인트의 제한이 있다. 분포형 광섬유 센서는 계측 포인트가 1000개가 넘지만, 샘플링 속도가 낮아 동적 계측이 불가능하다. 본 연구에서는 FBG와 브릴루안 상관영역 측정법의 장점만을 이용한 하이브리드 신경망 센서 계측 시스템이 제안하였다. 광섬유 브래그 격자를 포함한 광섬유를 이용하여 정적응답과 동적 응답을 선택적으로 계측 할 수 있는 계측 시스템이다. 제안된 시스템검증을 위하여 실내 실험을 수행하였으며, 기존의 센서와의 비교를 통해 정확도와 재현성을 검증하였다. 제안된 시스템을 활용하여, 동적 응답을 상시 계측하고, 전역적인 구조물의 상태를 평가한다. 이상 상태가 감지 되면, 분포형 계측 시스템을 이용하여 정적 응답을 계측하여, 구조물의 국부적인 상태를 평가한다. 제안된 시스템을 통해 효율적인 구조물 건전도 모니터링에 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. Amano, M. et al. (2007), 'Structural health monitoring of an advanced grid structure with embedded fiber bragg grating sensors', Structural Health Monitoring, 6(4), pp. 309-324.. https://doi.org/10.1177/1475921707081967
  2. Guemes, A., Fernandez-Lopez, A. and Soller, B. (2010), 'Optical Fiber Distributed Sensing - Physical Principles and Applications', Structural Health Monitoring: An International Journal, 9(3), pp. 233-245.. https://doi.org/10.1177/1475921710365263
  3. Hotate, K. (2000), 'Measurement of brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation-', IEICE Transactions on Electronics, E83-C(3), pp. 405-411.
  4. Li, S. and Wu, Z. (2007), 'Development of Distributed Long-gage Fiber Optic Sensing System for Structural Health Monitoring', Structural Health Monitoring: An International Journal, 6(2), pp. 133-143. https://doi.org/10.1177/1475921706072078
  5. Sienko, R. et al. (2018), 'Strain and crack analysis within concrete members using distributed fibre optic sensors', Structural Health Monitoring, 1 November.
  6. Wei, H. et al. (2019), 'Low-coherent fiber-optic interferometry for in situ monitoring the corrosion-induced expansion of pre-stressed concrete cylinder pipes', Structural Health Monitoring. SAGE Publications Ltd..
  7. Zhang, Q. et al. (2019), 'Deflection distribution estimation of the main arch of arch bridges based on long-gauge fiber optic sensing technology', Advances in Structural Engineering, 22(15), pp. 3341-3351. https://doi.org/10.1177/1369433219862433
  8. Zhao, X. et al. (2012), 'Application of multiscale fiber optical sensing network based on brillouin and fiber bragg grating sensing techniques on concrete structures', International Journal of Distributed Sensor Networks, 2012..
  9. Zhou, Z. et al. (2019), 'Structural damage detection with distributed long-gauge FBG sensors under multi-point excitations', Smart Materials and Structures. IOP Publishing, 28(9), p. 095023. https://doi.org/10.1088/1361-665X/ab28e6