DOI QR코드

DOI QR Code

Evaluation of Self-Healing Performance for Mortar Beams Containing Self-Healing Materials

자기치유 재료 혼입 모르타르 보의 자기치유 성능 평가

  • 신동익 (성균관대학교 건설환경시스템공학과) ;
  • 무하마드 하룬 (성균관대학교 건설환경시스템공학과) ;
  • 민경성 (성균관대학교 건설환경시스템공학과) ;
  • 이광명 (성균관대학교 건설환경시스템공학과) ;
  • 이정윤 (성균관대학교 건설환경공학부)
  • Received : 2019.12.04
  • Accepted : 2020.01.06
  • Published : 2020.02.29

Abstract

In this study, the self-healing performance of mortar beams containing self-healing materials was evaluated through experiments. Normal mortar beams and self-healing mortar beams were used In the experiments. The self-healing performance was evaluated by comparing the mortar compressive strength, member strength, and self-healing effects of cracks. The experimental results showed that the compressive strength of mortar containing self-healing material was smaller than that of normal mortar, but the ratio of 118 days compressive strength to 28 days compressive strength was the same. The member strength tended to increase with increasing curing period. In normal mortar specimens, the member strength did not recover even if the curing period increased, but the strength of the self-healing mortar specimens tended to recover as reaction products were produced. The crack width tended to decrease after the healing periods in both specimens, but the reaction product was observed only in the self-healing mortar specimens.

본 연구에서는 실험을 통하여 자기치유 재료 혼입 모르타르 보의 자기치유 성능을 평가하였다. 실험에는 일반 모르타르 보 실험체와 자기치유 모르타르 보 실험체가 사용되었으며, 모르타르의 압축강도, 내력 및 균열의 자기치유 효과를 비교하여 자기치유 성능을 평가하였다. 실험결과 자기치유 재료를 혼입한 모르타르의 압축강도가 일반 모르타르의 압축강도보다 작았지만 28일 압축강도에 대한 118일 압축강도 비율은 동일하게 나타났다. 실험체의 내력은 재령일이 길어질수록 증가하는 경향을 나타냈다. 일반 모르타르 실험체는 균열이 발생할 경우 재령일이 증가하여도 하중은 회복되지 않았으나 자기치유 모르타르 실험체의 경우 반응 생성물의 영향으로 내력이 다소 회복되는 경향을 나타냈다. 균열폭은 두 종류의 실험체 모두 치유기간이 지난 후 감소하는 경향을 보였으나 자기치유 모르타르 실험체에서만 반응생성물이 관찰되었다.

Keywords

References

  1. Wiktor, V., & Jonkers, H. M. (2011). Quantification of crack-healing in novel bacteria-based self-healing concrete. Cement and Concrete Composites, 33(7), 763-770. https://doi.org/10.1016/j.cemconcomp.2011.03.012
  2. Van Tittelboom, K., & De Belie, N. (2013). Self-healing in cementitious materials-A review. Materials, 6(6), 2182-2217. https://doi.org/10.3390/ma6062182
  3. Cho, S. H., White, S. R., & Braun, P. V. (2009). Self‐healing polymer coatings. Advanced Materials, 21(6), 645-649. https://doi.org/10.1002/adma.200802008
  4. Muhammad, N. Z., Shafaghat, A., Keyvanfar, A., Majid, M. Z. A., Ghoshal, S. K., Yasouj, S. E. M., ... & Shirdar, M. R. (2016). Tests and methods of evaluating the self-healing efficiency of concrete: A review. Construction and Building Materials, 112, 1123-1132. https://doi.org/10.1016/j.conbuildmat.2016.03.017
  5. Bhaskar, S., Hossain, K. M. A., Lachemi, M., Wolfaardt, G., & Kroukamp, M. O. (2017). Effect of self-healing on strength and durability of zeolite-immobilized bacterial cementitious mortar composites. Cement and Concrete Composites, 82, 23-33. https://doi.org/10.1016/j.cemconcomp.2017.05.013
  6. Vijay, K., & Murmu, M. (2019). Effect of calcium lactate on compressive strength and self-healing of cracks in microbial concrete. Frontiers of Structural and Civil Engineering, 13(3), 515-525. https://doi.org/10.1007/s11709-018-0494-2
  7. Wang, J. Y., De Belie, N., & Verstraete, W. (2012). Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. Journal of industrial microbiology & biotechnology, 39(4), 567-577. https://doi.org/10.1007/s10295-011-1037-1
  8. Ozbay, E., Sahmaran, M., Lachemi, M., & Yucel, H. E. (2013). Self-Healing of Microcracks in High-Volume Fly-Ash-Incorporated Engineered Cementitious Composites. ACI Materials Journal, 110(1).
  9. Sahmaran, M., Yildirim, G., Ozbay, E., Ahmed, K., & Lachemi, M. (2014). Self-healing ability of cementitious composites: effect of addition of pre-soaked expanded perlite. Magazine of Concrete Research, 66(8), 409-419. https://doi.org/10.1680/macr.13.00250
  10. Wang, J. Y., Snoeck, D., Van Vlierberghe, S., Verstraete, W., & De Belie, N. (2014). Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete. Construction and building materials, 68, 110-119. https://doi.org/10.1016/j.conbuildmat.2014.06.018
  11. Ferrara, L., Krelani, V., & Carsana, M. (2014). A "fracture testing" based approach to assess crack healing of concrete with and without crystalline admixtures. Construction and Building Materials, 68, 535-551. https://doi.org/10.1016/j.conbuildmat.2014.07.008
  12. Lee, J. Y., Lee, D. H., Lee, J. E., & Choi, S. H. (2015). Shear Behavior and Diagonal Crack Width for Reinforced Concrete Beams with High-Strength Shear Reinforcement. ACI Structural Journal, 112(3).
  13. Choi, Y. W., Oh, S. R., Kim, C. G., & Nam, E. J.. (2019). A Study on Crack Healing Properties of Cement Composites Mixed with Self-healing Microcapsules, Journal of the Korea Institute for Structural Maintenance and Inspection, KISMI, 23(1), 113-121. https://doi.org/10.11112/JKSMI.2019.23.1.113