DOI QR코드

DOI QR Code

Opposition based charged system search for parameter identification problem in a simplified Bouc-Wen model

  • 투고 : 2019.11.30
  • 심사 : 2020.03.09
  • 발행 : 2020.04.25

초록

In this paper, a new opposition based charged system search (CSS) is proposed to be used as a parameter identification of highly nonlinear semi-active magneto-rheological damper. By replacing the opposition particles with current solutions, the mentioned strategy is used to enhance the search space and to increase the exploration of CSS. To investigate the effectiveness of the proposed method, a nonlinear modified Bouc-Wen model of MR damper is considered to find its parameters, and compare it with those achieved from experimental model of MR damper. Also, by exploiting the sensitivity analysis and using the importance vector, the less importance parameters in the Bouc-Wen model are eliminated which makes the MR damper model simpler. Results demonstrate the new proposed algorithm (OBLCSS) has a high ability to tackle highly nonlinear problems. Based on the results of the α importance vector, a simplified model is proposed and its parameters are identified by using the presented OBLCSS algorithm. The simplified proposed model also has a high capability of estimating damper responses.

키워드

참고문헌

  1. Azar, B.F., Rahbari, N.M. and Talatahari, S. (2011), "Seismic mitigation of tall buildings using Magneto-rheological dampers", Asian J. Civil Eng. (Build. Housing), 12(5), 637-649.
  2. Azar, B.F., Hadidi, A. and Rafiee, A. (2015), "An efficient simulation method for reliability analysis of systems with expensive-to-evaluate performance functions", Struct. Eng. Mech., 55(5), 979-999. https://doi.org/10.12989/sem.2015.55.5.979.
  3. Azar, B.F., Veladi, H., Talatahari, S. and Raeesi. F. (2020), "Optimal design of magnetorheological damper based on tuning Bouc-Wen model parameters using hybrid algorithms", KSCE J. Civil Eng., 24(3), 867-878. https://doi.org/10.1007/s12205-020-0988-z.
  4. Back, T. and Schwefel, H.P. (1993), "An overview of evolutionary algorithms for parameter optimization", Evolut. Comput., 1(1), 1-23. https://doi.org/10.1162/evco.1993.1.1.1.
  5. Bai, X.-X., Cai, F.-L. and Chen, P. (2019), "Resistor-capacitor (RC) operator-based hysteresis model for magneto-rheological (MR) dampers", Mech. Syst. Signal Proc., 117, 157-169. https://doi.org/10.1016/j.ymssp.2018.07.050.
  6. Bouc, R. (1967), "Forced vibration of mechanical systems with hysteresis", Proceedings of the 4th Conference on Nonlinear Oscillation, Prague, September.
  7. Charalampakis, A.E. and Koumousis, V.K. (2008), "Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm", J. Sound Vib., 314, 571-585. https://doi.org/10.1016/j.jsv.2008.01.018.
  8. Charalampakis, A.E. and Dimou, C.K. (2010), "Identification of Bouc-Wen hysteretic systems using particle swarm optimization", Comput. Struct., 88, 1197-1205. https://doi.org/10.1016/j.compstruc.2010.06.009.
  9. Choi, S.B., Lee, H.S. and Park, Y.P. (2001), "A hysteresis model for the field-dependent damping force of a magneto-rheological damper", J. Sound Vib., 245(2), 375-383. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDertail&idt=1070512. https://doi.org/10.1006/jsvi.2000.3539
  10. Ditlevsen, O. (1982), "Model uncertainty in structural reliability", Struct. Safety, 1(1), 73-86. https://doi.org/10.1016/0167-4730(82)90016-9
  11. Du, X. (2005), "First-order and second-reliability methods, in Probabilistic Engineering Design", Missouri S&T, U.S.A.
  12. Dyke, S.J., Spencer, B.F., Sain, M.K. and Carlson, J.D. (1996) "Modeling and control of magneto-rheological dampers for seismic response reduction", Smart Mat. Struct., 5(5), 565-575. https://doi.org/10.1088/0964-1726/5/5/006
  13. Gavin, H. P. and Zaicenco, A. (2007), "Performance and reliability of semi-active equipment isolation", J. Sound Vib., 306(1-2), 74-90. https://doi.org/10.1016/j.jsv.2007.05.039.
  14. Gong, J.X. and Yi, P. (2011), "A robust iterative algorithm for structural reliability analysis", Struct. Multidiscip. Optim., 43(4), 519-527. https://doi.org/10.1007/s00158-010-0582-y.
  15. Graczykowski, C. and Pawlowski, P. (2017), "Exact physical model of magneto-rheological damper", Appl. Math. Model., 47, 400-424. https://doi.org/10.1016/j.apm.2017.02.035.
  16. Guo, A., Xu, Y. and Wu, B. (2002), "Seismic reliability analysis of hysteretic structure with viscoelastic dampers", Eng. Struct., 24(3), 373-383. https://doi.org/10.1016/S0141-0296(01)00103-1.
  17. Hadidi, A., Azar, B.F. and Rafiee, A. (2016), "Reliability-based design of semi-rigidly connected base-isolated buildings subjected to stochastic near-fault excitations", Earthq. Struct., 11(4), 701-721. https://doi.org/10.12989/eas.2016.11.4.701.
  18. Hadidi, A., Azar, B.F. and Rafiee, A. (2017), "Efficient response surface method for high-dimensional structural reliability analysis", Struct. Safety, 68, 15-27. https://doi.org/10.1016/j.strusafe.2017.03.006.
  19. Hadidi, A., Azar, B.F. and Shirgir, S. (2019), "Reliability assessment of semi-active control of structures with MR damper", Earthq. Struct., 17(2), 131-141. https://doi.org/10.12989/eas.2019.17.2.131.
  20. Hao, G.L., Wang, W.Z., Liang, X.L. and Wang, H.B. (2013), "The new approximate calculation method for the first-order reliability", Advan. Mat. Res., 694-697, 891-895. https://doi.org/10.4028/www.scientific.net/AMR.694-697.891.
  21. Hasofer, A.M. and Lind, N.C. (1974), "Exact and invariant second-moment code format", J. Eng. Mech. Div., 100(1), 111-121. https://doi.org/10.1061/JMCEA3.0001848
  22. Hong, S., Wereley, N., Choi, Y. and Choi, S. (2008), "Analytical and experimental validation of a nondimensional Bingham model for mixed-mode magneto-rheological dampers", J. Sound Vib., 312(3), 399-417. https://doi.org/10.1016/j.jsv.2007.07.087.
  23. Ikhouane, F., Manosa, V. and Rodellar, J. (2007), "Dynamic properties of the hysteretic Bouc-Wen model", Syst. Contr. Let., 56(3), 197-205. https://doi.org/10.1016/j.sysconle.2006.09.001.
  24. Ismail, M., Ikhouane, F. and Rodellar, J. (2009), "The hysteresis Bouc-Wen model, a survey", Archiv. Comput. Meth. Eng., 16(2), 161-188. https://doi.org/10.1007/s11831-009-9031-8.
  25. Kaveh, A. and Talatahari, S. (2010), "A novel heuristic optimization method: charged system search", Acta Mechanica, 213(3-4), 267-289. https://doi.org/10.1007/s00707-009-0270-4.
  26. Kaveh, A. and Talatahari, S. (2012), "A hybrid CSS and PSO algorithm for optimal design of structures" Struct. Eng. Mech., 42(6), 783-797. https://doi.org/10.12989/sem.2012.42.6.783
  27. Kaveh, A. and Shokohi, F. (2016), "A hybrid optimization algorithm for the optimal design of laterally-supported castellated beams", Scientia Iranica, 23(2), 508-519. https://dx.doi.org/10.24200/sci.2016.2135.
  28. Keshtegar, B. (2016), "Chaotic conjugate stability transformation method for structural reliability analysis", Comput. Meth. Appl. Mech. Eng., 310, 866-885. https://doi.org/10.1016/j.cma.2016.07.046.
  29. Kiureghian, A.D. and Stefano, M.D. (1991), "Efficient algorithm for second-order reliability analysis", J. Eng. Mech., 117(12), 2904-2923. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:12(2904).
  30. Kiureghian, A.D. (2005), "Engineering Design Reliability Handbook", CRC Press, Boca Raton, U.S.A.
  31. Kwok, N., Ha, Q., Nguyen, T., Li, J. and Samali, B. (2006), "A novel hysteretic model for magneto-rheological fluid dampers and parameter identification using particle swarm optimization", Sensors Actuators A: Physical, 132(2), 441-451. https://doi.org/10.1016/j.sna.2006.03.015.
  32. Kwok, N.M., Ha, Q.P., Nguye, M.T., Li, J. and Samali, B. (2007), "Bouc-Wen model parameter identification for a MR fluid damper using computationally efficient GA", ISA Transactions, 46(2), 167-179. https://doi.org/10.1016/j.isatra.2006.08.005.
  33. Lee, J.O., Yang, Y.S. and Ruy, W.S. (2002), "A comparative study on reliability-index and target-performance-based probabilistic structural design optimization", Comput. Struct., 80(3-4), 257-269. https://doi.org/10.1016/S0045-7949(02)00006-8.
  34. Liu, P.L. and Kiureghian, A.D. (1991), "Optimization algorithms for structural reliability", Struct. Safety, 9(3), 161-177. https://doi.org/10.1016/0167-4730(91)90041-7.
  35. Liu, P., Liu, H., Teng, J. and Cao, T. (2006), "Parameters identification for smart dampers based on simulated annealing and genetic algorithm", Proceedings of the IEEE International Conference on Mechatronics and Automation, Henan, China, June.
  36. Makhduomi, H., Keshtegar, B. and Shahraki, M. (2017), "A comparative study of first-order reliability method-based steepest descent search directions for reliability analysis of steel structures", Advan. Civil Eng., 2017, 1-10. https://doi.org/10.1155/2017/8643801.
  37. Meng, Z., Li, G., Yang, D. and Zhan, L. (2017), "A new directional stability transformation method of chaos control for first-order reliability analysis", Struct. Multidiscip. Optim., 55(2), 601-612. https://doi.org/10.1007/s00158-016-1525-z.
  38. Mrabet, E., Guedri, M., Ichchou, M. and Ghanmi, S. (2015), "Stochastic structural and reliability based optimization of tuned mass damper", Mecha. Syst. Sig. Proc., 60, 437-451. https://doi.org/10.1016/j.ymssp.2015.02.014.
  39. Rackwitz, R. and Flessler, B. (1978), "Structural reliability under combined random load sequences", Comput. Struct., 9(5), 489-494. https://doi.org/10.1016/0045-7949(78)90046-9.
  40. Rahbari, N.M., Azar, B.F., Talatahari, S. and Safari, H. (2013), "Semi-active direct control method for seismic alleviation of structures using MR dampers", Struct. Control Health Monit., 20(6), 1021-1042. https://doi.org/10.1002/stc.1515.
  41. Rakotondrabe, M. (2011), "Bouc-Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators", IEEE Transactions Autom. Sci. Eng., 8(2), 428-431. https://doi.org/10.1109/TASE.2010.2081979.
  42. Saremi, S., Mirjalili, S. and Lewis, A. (2017), "Grasshopper optimisation algorithm: Theory and application", Advan. Eng. Softw., 105, 30-47. https://doi.org/10.1016/j.advengsoft.2017.01.004.
  43. Shahrouzi, M., Barzigar, A. and Rezazadeh, D. (2019), "Static and dynamic opposition-based learning for colliding bodies optimization", Int. J. of Optimz. Civil Eng., 9(3), 499-523. http://ijoce.iust.ac.ir/article-1-403-en.html.
  44. Song, J. and Kiureghian, A.D. (2006), "Generalized Bouc-Wen model for highly asymmetric hysteresis", J. Eng. Mech., 132(6), 610-618. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:6(610).
  45. Spencer Jr, B., Sain, M., Kantor, J. and Montemagno, C. (1992), "Probabilistic stability measures for controlled structures subject to real parameter uncertainties", Smart Materials and Structures, 1(4), 294. https://doi.org/10.1088/0964-1726/1/4/004
  46. Spencer Jr, B., Dyke, S., Sain, M. and Carlson, J. (1997), "Phenomenological model for magneto-rheological dampers", J. Eng. Mech., 123(3), 230-238. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230).
  47. Sun, H., Lus, H. and Betti, H. (2013), "Identification of structural models using a modified artificial bee colony algorithm", Comput. Struct., 116(15), 59-74. https://doi.org/10.1016/j.compstruc.2012.10.017.
  48. Talatahari, S., Kaveh, A. and Rahbari, N. M. (2012), "Parameter identification of Bouc-Wen model for mr fluid dampers using adaptive charged system search optimization", Mech. Sci. Technol., 26(8), 1-12. https://doi.org/10.1007/s12206-012-0625-y.
  49. Talatahari, S. and Rahbari, N.M. (2015), "Enriched imperialist competitive algorithm for system identification of magneto-rheological dampers", Mech. Syst. Signal Proce., 62-63, 506-516. https://doi.org/10.1016/j.ymssp.2015.03.020.
  50. Tizhoosh, H.R. (2005), "Opposition-Based Learning: A New Scheme for Machine Intelligence", International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, Vienna, Austria, May.
  51. Vazirizade, S.M., Nozhati, S. and Zadeh, M.A. (2017), "Seismic reliability assessment of structures using artificial neural network", J. Build. Eng., 11, 230-235. https://doi.org/10.1016/j.jobe.2017.04.001.
  52. Wen, Y.K. (1976), "Method for random vibration of hysteretic systems", J. Eng. Mech., 102(2), 249-263.
  53. Wen, Y.K. (1980), "Equivalent linearization for hysteretic systems under random excitation", J. Appl. Mech., 47(1), 150-154. https://doi.org/10.1115/1.3153594
  54. Wen, Y. K. (1989), "Methods of random vibration for inelastic structures", Appl. Mech. Rev., 42(2), 39-52. https://doi.org/10.1115/1.3153594.
  55. Yan, G. and Zhou, L.L. (2006), "Integrated fuzzy logic and genetic algorithms for multi-objective control of structures using MR dampers", J. Sound Vib., 296(1-2), 368-382. https://doi.org/10.1016/j.jsv.2006.03.011.
  56. Yang, G., Spencer, B.F., Carlson, J.D. and Sain, M.K. (2002), "Large-scale MR fluid dampers: modeling and dynamic performance considerations", Eng. Struct., 24(3), 309-323. https://doi.org/10.1016/S0141-0296(01)00097-9.
  57. Ye, W., Feng, W. and Fan, S. (2017), "A novel multi-swarm particle swarm optimization with dynamiclearning strategy", Appl. Soft Comput., 61, 832-843. https://doi.org/10.1016/j.asoc.2017.08.051.
  58. Zhang, S., Luo, G. and Zhou, Y. (2017), "Hybrid Grey Wolf Optimizer Using Elite Opposition-Based Learning Strategy and Simplex Method", Int. J. Comput. Intell. Appl., 16(2), 1750012. https://doi.org/10.1142/S1469026817500122.