DOI QR코드

DOI QR Code

미국 네브라스카의 관개된 옥수수 농업생태계의 복사, 에너지 및 엔트로피의 교환

Radiation, Energy, and Entropy Exchange in an Irrigated-Maize Agroecosystem in Nebraska, USA

  • Yang, Hyunyoung (Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University) ;
  • Indriwati, Yohana Maria (Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University) ;
  • Suyker, Andrew E. (School of Natural Resources, University of Nebraska-Lincoln) ;
  • Lee, Jihye (National Center for Agro Meteorology) ;
  • Lee, Kyung-do (National Institute of Agricultural Science, Rural Development Administration) ;
  • Kim, Joon (Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University)
  • 투고 : 2019.12.07
  • 심사 : 2020.02.19
  • 발행 : 2020.03.30

초록

이 연구의 목표는 관개된 옥수수 밭에서의 복사, 에너지 및 엔트로피의 교환을 평가하고 문서화하는 것이다. 열역학적 관점에서, 우리는 이 농업생태계를 태양 복사로 인해 시스템 내부와 외부 사이에 큰 경도(gradient)가 부여되는 열린 열역학적 시스템으로 간주하였다. 따라서 시스템이 평형에서 멀어질 때, 열역학적 원칙에 따라 비평형 소산 과정(nonequilibrium dissipative process)인 이 생태-사회시스템이 모든 생물, 물리, 화학 및 인위적 구성 요소를 사용하여 태양으로부터 주어진 경도에 저항하여 이를 감소시키도록 움직인다고 가정하였다. 이 가설을 검증하기 위한 첫 단계로서 미국 네브라스카의 옥수수 밭에 위치한 AmeriFlux의 NE1 사이트에서 2003년부터 2014년까지 관측된 플럭스 및 미기상 자료를 사용하여 복사, 에너지 및 엔트로피의 교환을 정량화하였다. 12년 평균한 생장기간의 결과에 따르면, 시스템의 에너지 포획(순복사와 하향단파복사의 비, Rn/Rs↓)은 옥수수의 생장과 함께 증가하였고, 생장기간이 비생장기간보다 약 80% 높았다. 생장기간 동안 시스템 내의 엔트로피 생성(σ)은 평균 9.56 MJ m-2 K-1이었고, 주로 하향단파 복사에 의해 결정되었다. 엔트로피 수송(J)은 잠열플럭스, 순장파복사, 현열플럭스의 순으로 기여하였고, 시스템 외부 환경으로 퍼낸 양은 σ의 ~84%에 해당하는 -7.99 MJ m-2 K-1이었다. 따라서 매년 생장 기간동안 시스템 내에 순 축적된 엔트로피(dS/dt)는 1.57 MJ m-2 K-1이었다. 탄소 흡수 효율(CUE)은 1.25~1.62, 물 사용 효율(WUE)은 1.98~2.92 g C (kg H2O)-1이었고 모두 옥수수의 성장과 함께 증가하였다. 극심한 가뭄으로 관개가 더 빈번하게 행해진 2012년의 경우, σ와 J가 모두 평년보다 10% 많은 최대값을 보였고, 그 결과 서로 대부분 상쇄되어 dS/dt는 평년보다 조금 높은 수준에 머물렀다. 가뭄 중에도 빈번한 관개로 인해 엔트로피 수송의 주된 경로가 현열플럭스에서 잠열플럭스로 바뀌면서 생산량과 CUE는 평년 값을 웃돌았으나 물과 빛의 사용 효율은 오히려 낮아졌다. 이러한 결과에 근거하여 관개된 옥수수 생태-사회시스템의 지속가능성의 변화를 평가하기에는 아직 여러가지 문제가 남아있다. 자기-조직화 과정은 시스템과 주변 간의 경도를 효과적으로 감소시키는 역할을 한다. 따라서 엔트로피 자료와 함께, 지속가능성의 척도가 되는 자기-조직화 역량을 나타내는 스펙트랄 엔트로피, 또는 하부시스템의 구조 및 에너지·물질의 흐름의 강도와 방향의 변화를 가늠할 수 있는 역학적 과정망(dynamic process network) 분석 등의 추가 연구가 병행되어야 한다.

An irrigated-maize agroecosystem is viewed as an open thermodynamic system upon which solar radiation impresses a large gradient that moves the system away from equilibrium. Following the imperative of the second law of thermodynamics, such agroecosystem resists and reduces the externally applied gradient by using all means of this nature-human coupled system acting together as a nonequilibrium dissipative process. The ultimate purpose of our study is to test this hypothesis by examining the energetics of agroecosystem growth and development. As a first step toward this test, we employed the eddy covariance flux data from 2003 to 2014 at the AmeriFlux NE1 irrigated-maize site at Mead, Nebraska, USA, and analyzed the energetics of this agroecosystem by scrutinizing its radiation, energy and entropy exchange. Our results showed: (1) more energy capture during growing season than non-growing season, and increasing energy capture through growing season until senescence; (2) more energy flow activity within and through the system, providing greater potential for degradation; (3) higher efficiency in terms of carbon uptake and water use through growing season until senescence; and (4) the resulting energy degradation occurred at the expense of increasing net entropy accumulation within the system as well as net entropy transfer out to the surrounding environment. Under the drought conditions in 2012, the increased entropy production within the system was accompanied by the enhanced entropy transfer out of the system, resulting in insignificant net entropy change. Drought mitigation with more frequent irrigation shifted the main route of entropy transfer from sensible to latent heat fluxes, yielding the production and carbon uptake exceeding the 12-year mean values at the cost of less efficient use of water and light.

키워드

참고문헌

  1. Adegoke, J. O., R. A. P. Sr., J. Eastman, R. Mahmood, and K. G. Hubbard, 2003: Impact of irrigation on midsummer surface fluxes and temperature under dry synoptic conditions: A regional atmospheric model study of the U.S. high plains. Monthly Weather Review 131(3), 556-564. https://doi.org/10.1175/1520-0493(2003)131<0556:Ioioms>2.0.Co;2
  2. Brunsell, N., S. Schymanski, and A. Kleidon, 2011: Quantifying the thermodynamic entropy budget of the land surface: is this useful? Earth System Dynamics Discussions 2(1), 57-103. 10.5194/esdd-2-71-2011
  3. Campbell, G. S., and J. Norman, 1998: An introduction to environmental biophysics. Springer-Verlag New York.
  4. Clausius, R., 1867: The mechanical theory of heat: With its applications to the steam-engine and to the physical properties of bodies. J. van Voorst., London.
  5. Cochran, F. V., N. A. Brunsell, and A. E. Suyker, 2016: A thermodynamic approach for assessing agroecosystem sustainability. Ecological Indicators 67, 204-214. https://doi.org/10.1016/j.ecolind.2016.01.045
  6. Endres, R. G., 2017: Entropy production selects nonequilibrium states in multistable systems. Scientific Reports ,7(1), 14437. https://doi.org/10.1038/s41598-017-14485-8
  7. Eulenstein, F., W. Haberstock, W. Steinborn, Y. U. Svirezhev, J. Olejnik, S. Schlindwein, and V. Pomaz, 2003: Perspectives from energetic-thermodynamic analysis of land use systems: Perspektiven der energetischthermodynamischen analyse von landnutzungssystemen. Archives of Agronomy and Soil Science 49, 663-676. https://doi.org/10.1080/03650340310001615138
  8. Desai, A. R., A. D. Richardson, A. M. Moffat, J. Kattge, D. Y. Hollinger, A. Barr, E. Falge, A. Noormets, D. Papale, M. Reichstein, and V. J. Stauch, 2008: Cross-site evaluation of eddy covariance GPP and RE decomposition techniques 148(6-7), 821-838. https://doi.org/10.1016/j.agrformet.2007.11.012
  9. Falge, E., D. Baldocchi, J. Tenhunen, M. Aubinet, P. Bakwin, P. Berbigier, C. Bernhofer, G. Burba, R. Clement, K. J. Davis, J. A. Elbers, A. H. Goldstein, A. Grelle, A. Granier, J. Guomundsson, D. Hollinger, A. S. Kowalski, G. Katul, B. E. Law, Y. Malhi, T. Meyers, R. K. Monson, J. W. Munger, W. Oechel, K. T. Paw U, K. Pilegaard, U. Rannik, C. Rebmann, A. Suyker, R. Valentini, K. Wilson, and S. Wofsy, 2002: Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricultural and Forest Meteorology 113(1), 53-74. https://doi.org/10.1016/S0168-1923(02)00102-8
  10. Fath, B. D., S. E. Jorgensen, B. C. Patten, and M. Straskraba, 2004: Ecosystem growth and development. BioSystems 77, 213-228. https://doi.org/10.1016/j.biosystems.2004.06.001
  11. Flanagan, L. B., L. A. Wever, and P. J. Carson, 2002: Seasonal and interannual variation in carbon dioxide exchange and carbon balance in anorthern temperate grassland. Global Change Biology 8, 599-615. https://doi.org/10.1046/j.1365-2486.2002.00491.x
  12. Force, D. T., 2013: An interpretation of the origins of the 2012 central great plains drought.
  13. Gitelson, A. A., A. Vina, S. B. Verma, D. C. Rundquist, T. J. Arkebauer, G. Keydan, B. Leavitt, V. Ciganda, G. G. Burba, and A. E. Suyker, 2006: Relationship between gross primary production and chlorophyll content in crops: Implications for the synoptic monitoring of vegetation productivity. Journal of Geophysical Research: Atmospheres 111(D8). https://doi.org/10.1029/2005jd006017
  14. Grigg, N. S., 2014: The 2011-2012 drought in the United States: new lessons from a record event. International Journal of Water Resources Development 30(2), 183-199. https://doi.org/10.1080/07900627.2013.847710
  15. Holdaway, R. J., A. D. Sparrow, and D. A. Coomes, 2010: Trends in entropy production during ecosystem development in the Amazon Basin. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 365(1545), 1437-1447. https://doi.org/10.1098/rstb.2009.0298
  16. Huber, D., D. Mechem, and N. Brunsell, 2014: The effects of great plains irrigation on the surface energy balance, regional circulation, and precipitation. Climate 2, 103-128. https://doi.org/10.3390/cli2020103
  17. Humes, K. S., W. P. Kustas, M. S. Moran, W. D. Nichols, and M. A. Weltz, 1994: Variability of emissivity and surface temperature over a sparsely vegetated surface. Water Resources Research 30(5), 1299-1310. https://doi.org/10.1029/93wr03065
  18. Irmak, A., K. Singh, R., A. Walter-Shea, E., B. Verma, S., E. Suyker, A., 2011: Comparison and analysis of empirical equations for soil heat flux for different cropping systems and irrigation methods. Transactions of the ASABE 54(1), 67-80. https://doi.org/10.13031/2013.36261
  19. Kay, J., 1984: Self-organization in living systems. University of Waterloo, Waterloo, Ontario, Canada.
  20. Kim, J., S. B. Verma, and R. J. Clement, 1992: Carbon dioxide budget in a temperate grassland ecosystem. Journal of Geophysical Research: Atmospheres 97(D5), 6057-6063. https://doi.org/10.1029/92JD00186
  21. Kleidon, A., and S. Schymanski, 2008: Thermodynamics and optimality of the water budget on land: A review. Geophysical Research Letters 35(20). https://doi.org/10.1029/2008gl035393
  22. Kranz, W. L., S. Irmak, S. J. Van Donk, C. D. Yonts, and D. L. Martin, 2008: Irrigation management for corn. Neb Guide, University of Nebraska, Lincoln 10(5), 1-8.
  23. Kuglitsch, F. G., M. Reichstein, C. Beer, A. Carrara, R. Ceulemans, A. Granier, I. A. Janssens, B. Koestner, A. Lindroth, D. Loustau, G. Matteucci, L. Montagnani, E. J. Moors, D. Papale, K. Pilegaard, S. Rambal, C. Rebmann, E. D. Schulze, G. Seufert, H. Verbeeck, T. Vesala, M. Aubinet, C. Bernhofer, T. Foken, T. Grunwald, B. Heinesch, W. Kutsch, T. Laurila, B. Longdoz, F. Miglietta, M. J. Sanz, R. and Valentini, 2008: Characterisation of ecosystem wateruse efficiency of european forests from eddy covariance measurements. Biogeosciences Discuss 2008, 4481-4519. https://doi.org/10.5194/bgd-5-4481-2008
  24. Lin, H., M. Cao, P. Stoy, and Y. Zhang, 2009: Assessing self-organization of plant communities-A thermodynamic approach. Ecological Modelling 220, 784-790. https://doi.org/10.1016/j.ecolmodel.2009.01.003
  25. Massman, W. J., 1991: The attenuation of concentration fluctuations in turbulent flow through a tube. Journal of Geophysical Research: Atmospheres 96(D8), 15269-15273. https://doi.org/10.1029/91jd01514
  26. McCaughey, J. H., and W. L. Saxton, 1988: Energy balance storage terms in a mixed forest. Agricultural and Forest Meteorology 44(1), 1-18. https://doi.org/10.1016/0168-1923(88)90029-9
  27. Moore, T. R., and R. Knowles, 1989: The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Canadian Journal of Soil Science 69(1), 33-38. https://doi.org/10.4141/cjss89-004
  28. NASS, 2007: Census of Agriculture: Farm and Ranch Irrigation Survey. in U. N. A. S. Service, editor., Washington, D.C.
  29. Nguy-Robertson, A., A. Suyker, and X. Xiao, 2015: Modeling gross primary production of maize and soybean croplands using light quality, temperature, water stress, and phenology. Agricultural and Forest Meteorology 213, 160-172. https://doi.org/10.1016/j.agrformet.2015.04.008
  30. Odum, E. P., 1969: The strategy of ecosystem development. Science 164(3877), 262-270. https://doi.org/10.1126/science.164.3877.262
  31. Patzek, T. W., 2008: Thermodynamics of Agricultural Sustainability: The case of US maize agriculture. Critical Reviews in Plant Sciences 27(4), 272-293. https://doi.org/10.1080/07352680802247971
  32. Rosenberg, N. J., 1987: Climate of the great plains region of the United States. Great Plains Quarterly 7(1), 22-32.
  33. Rosenberg, N. J., B. L. Blad, and S. B. Verma, 1983: Microclimate: The Biological Environment, 2nd Edition. Wiley, USA.
  34. Ruddell, B. L., and P. Kumar, 2009: Ecohydrologic process networks: 1. Identification. 45(3), https://doi.org/10.1029/2008WR007279
  35. Schneider, E. D., and J. J. Kay, 1994: Life as a manifestation of the second law of thermodynamics. Mathematical and Computer Modelling 19(6), 25-48. https://doi.org/10.1016/0895-7177(94)90188-0
  36. Steinborn, W., and Y. Svirezhev, 2000: Entropy as an indicator of sustainability in agro-ecosystems: North Germany case study. Ecological Modelling 133(3), 247-257. https://doi.org/10.1016/S0304-3800(00)00323-9
  37. Suyker, A., 2016: AmeriFlux US-Ne1 Mead - irrigated continuous maize site.
  38. Suyker, A. E., and S. B. Verma, 1993: Eddy correlation measurement of $CO_2$ flux using a closed-path sensor: Theory and field tests against an open-path sensor. Boundary-Layer Meteorology 64(4), 391-407. https://doi.org/10.1007/bf00711707
  39. Suyker, A. E., and S. B. Verma, 2001: Year-round observations of the net ecosystem exchange of carbon dioxide in a native tallgrass prairie. Global Change Biology 7(3), 279-289. https://doi.org/10.1046/j.1365-2486.2001.00407.x
  40. Suyker, A. E., and S. B. Verma, 2008: Interannual water vapor and energy exchange in an irrigated maizebased agroecosystem. Agricultural and Forest Meteorology 148(3), 417-427. https://doi.org/10.1016/j.agrformet.2007.10.005
  41. Suyker, A. E., and S. B. Verma, 2010: Coupling of carbon dioxide and water vapor exchanges of irrigated and rainfed maize-soybean cropping systems and water productivity. Agricultural and Forest Meteorology 150(4), 553-563. https://doi.org/10.1016/j.agrformet.2010.01.020
  42. Suyker, A. E., and S. B. Verma, 2012: Gross primary production and ecosystem respiration of irrigated and rainfed maize-soybean cropping systems over 8 years. Agricultural and Forest Meteorology 165, 12-24. https://doi.org/10.1016/j.agrformet.2012.05.021
  43. Suyker, A. E., S. B. Verma, G. G. Burba, and T. J. Arkebauer, 2005: Gross primary production and ecosystem respiration of irrigated maize and irrigated soybean during a growing season. Agricultural and Forest Meteorology 131(3), 180-190. https://doi.org/10.1016/j.agrformet.2005.05.007
  44. USDA, 2019: Crop Production 2018 Summary. in U. S. D. o. Agriculture, editor.
  45. Verma, S. B., A. Dobermann, K. G. Cassman, D. T. Walters, J. M. Knops, T. J. Arkebauer, A. E. Suyker, G. G. Burba, B. Amos, H. Yang, D. Ginting, K. G. Hubbard, A. A. Gitelson, and E. A. Walter-Shea, 2005: Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems. Agricultural and Forest Meteorology 131(1), 77-96. https://doi.org/10.1016/j.agrformet.2005.05.003
  46. Wang, T., X. Tang, C. Zheng, Q. Gu, J. Wei, and M. Ma, 2018: Differences in ecosystem water-use efficiency among the typical croplands. Agricultural Water Management 209, 142-150. https://doi.org/10.1016/j.agwat.2018.07.030
  47. Wilhelmi, O. V., and D. A. Wilhite, 2002: Assessing vulnerability to agricultural drought: A Nebraska case study. Natural Hazards 25(1), 37-58. https://doi.org/10.1023/a:1013388814894
  48. Wilson, K., and D. Baldocchi, 2000: Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America. Agricultural and Forest Meteorology 100, 1-18. https://doi.org/10.1016/S0168-1923(99)00088-X
  49. Wofsy, S. C., M. L. Goulden, J. W. Munger, S. M. Fan, P. S. Bakwin, B. C. Daube, S. L. Bassow, and F. A. Bazzaz, 1993: Net exchange of $CO_2$ in a midlatitude forest. Science 260, 1314-1317. https://doi.org/10.1126/science.260.5112.1314
  50. Yang, Y., M. C. Anderson, F. Gao, B. Wardlow, C. R. Hain, J. A. Otkin, J. Alfieri, Y. Yang, L. Sun, and W. Dulaney, 2018: Field-scale mapping of evaporative stress indicators of crop yield: An application over Mead, NE, USA. Remote Sensing of Environment 210, 387-402. https://doi.org/10.1016/j.rse.2018.02.020
  51. Yun, J., M. Kang, S. Kim, J. Hwa Chun, C.-H. Cho, and J. Kim, 2014: How is the process network organized and when does it show emergent properties in a forest ecosystem? In: Sanayei, A., I. Zelinka, and O. E. Rossler, (Eds) ISCS 2013: Interdisciplinary Symposium on Complex Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 307-317.