Acknowledgement
This study was supported by the Korea Ministry of the Environment (MOE) as "Technologies for the Risk Assessment & Management Program (2017000140007)".
References
- Botz, M., Mudder, T. and Akcil, A. (2005), "Cyanide treatment: physical, chemical and biological processes", Advances in Gold Ore Processing, Elsevier, Amsterdam, 672-700.
- Botz, M.M. (2001), "Overview of cyanide treatment methods", Mining Environmental Management, Mining Journal Ltd., London, United Kingdom, 28-30.
- Comninellis, C. (1994), "Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment", Electrochim. Acta, 39(11-12), 1857-1862. https://doi.org/10.1016/0013-4686(94)85175-1.
- Dash, R.R., Gaur, A., Balomajumder, C. (2009), "Cyanide in industrial wastewaters and its removal: a review on biotreatment", J. Hazard. Mater., 163(1), 1-11. https://doi.org/10.1016/j.jhazmat.2008.06.051.
- El-Ghaoui, E., Jansson, R., Moreland, C. (1982), "Application of the trickle tower to problems of pollution control. II. The direct and indirect oxidation of cyanide", J. Appl. Electrochem., 12(1), 69-73. https://doi.org/10.1007/BF01112066.
- Felix-Navarro, R.M., Wai Lin, S., Violante-Delgadillo, V., Zizumbo-Lopez, A., Perez-Sicairos, S. (2011), "Cyanide degradation by direct and indirect electrochemical oxidation in electro-active support electrolyte aqueous solutions", J. Mexican Chemical Soc., 55(1), 51-56.
- Gan, Y., Duan, Q., Gong, W., Tong, C., Sun, Y., Chu, W., Ye, A., Miao, C., Di, Z. (2014), "A comprehensive evaluation of various sensitivity analysis methods: A case study with a hydrological model", Environ. Modell. Softw., 51, 269-285. https://doi.org/10.1016/j.envsoft.2013.09.031.
- Ghosh, R.S., Dzombak, D.A., Luthy, R.G. (1999), "Equilibrium precipitation and dissolution of iron cyanide solids in water", Environ. Eng. Sci., 16(4), 293-313. https://doi.org/10.1089/ees.1999.16.293.
- Ibrahim, K.K., Syed, M.A., Shukor, M.Y., Ahmad, S.A. (2016), "Biological remediation of cyanide: A review", BIOTROPIA-The Southeast Asian J. Tropical Biology, 22(2), 151-163. http://dx.doi.org/10.11598/btb.2015.22.2.393.
- Johnson, C.A. 2015. "The fate of cyanide in leach wastes at gold mines: An environmental perspective", Appl. Geochem., 57, 194-205. https://doi.org/10.1016/j.apgeochem.2014.05.023.
- Jung, J., Shin, B., Lee, J.W., Park, K.Y., Won, S., Cho, J. (2019), "Pilot scale membrane separation of plating wastewater by nanofiltration and reverse osmosis", Membr. Water. Treat., 10(3), 239-244. https://doi.org/10.12989/mwt.2019.10.3.239.
- Lanza, M.R., Bertazzoli, R. (2002), "Cyanide oxidation from wastewater in a flow electrochemical reactor", Ind. Eng. Chem. Res., 41(1), 22-26. https://doi.org/10.1021/ie010363n.
- Lee, C.-G., Song, M.-K., Ryu, J.-C., Park, C., Choi, J.-W., Lee, S.-H. (2016), "Application of carbon foam for heavy metal removal from industrial plating wastewater and toxicity evaluation of the adsorbent", Chemosphere, 153, 1-9. https://doi.org/10.1016/j.chemosphere.2016.03.034.
- Li, T., Xiao, K., Yang, B., Peng, G., Liu, F., Tao, L., Chen, S., Wei, H., Yu, G., Deng, S. (2019), "Recovery of Ni (II) from real electroplating wastewater using fixed-bed resin adsorption and subsequent electrodeposition", Front. Env. Sci. Eng., 13(6), 91. https://doi.org/10.1007/s11783-019-1175-7.
- Ly, N., Nguyen, T., Zoh, K.-D., Joo, S.-W. (2017), "Interaction between Diethyldithiocarbamate and Cu (II) on Gold in Non-Cyanide Wastewater", Sensors, 17(11), 2628. https://doi.org/10.3390/s17112628.
- Mekuto, L., Ntwampe, S.K., Akcil, A. (2016), "An integrated biological approach for treatment of cyanidation wastewater", Sci. Total. Environ., 571, 711-720. https://doi.org/10.1016/j.scitotenv.2016.07.040.
- Smith, M.J., Heath, A.G. (1979), "Acute toxicity of copper, chromate, zinc, and cyanide to freshwater fish: effect of different temperatures", Bull. Environ. Contam. Toxicol., 22(1/2). https://doi.org/10.1007/BF02026917.
- Tian, S., Li, Y., Zeng, H., Guan, W., Wang, Y., Zhao, X. (2016), "Cyanide oxidation by singlet oxygen generated via reaction between H2O2 from cathodic reduction and OCl- from anodic oxidation", J. Colloid Interface Sci., 482, 205-211. https://doi.org/10.1016/j.jcis.2016.07.024.
- White, D.M., Pilon, T.A., Woolard, C. (2000), "Biological treatment of cyanide containing wastewater", Water Res., 34(7), 2105-2109. https://doi.org/10.1016/S0043-1354(99)00362-0.
- Xu, H., Li, A., Feng, L., Cheng, X., Ding, S. (2012), "Destruction of cyanide in aqueous solution by electrochemical oxidation method", J. Electrochem. Sci., 7, 7516-7525.
- Yu, X., Xu, R., Wei, C., Wu, H. (2016), "Removal of cyanide compounds from coking wastewater by ferrous sulfate: Improvement of biodegradability", J. Hazard. Mater., 302, 468-474. https://doi.org/10.1016/j.jhazmat.2015.10.013.