DOI QR코드

DOI QR Code

Aqueous U(VI) removal by green rust and vivianite at phosphate-rich environment

  • Sihn, Youngho (Decommissioning Technology Research Division, KAERI) ;
  • Yoon, In-Ho (Decommissioning Technology Research Division, KAERI)
  • 투고 : 2019.11.01
  • 심사 : 2020.01.27
  • 발행 : 2020.05.25

초록

Vivianite (Fe32+(PO4)2·8H2O) and green rust ([Fe42+Fe23+(OH)-12][SO42-·2H2O]2-), ferrous containing minerals, could remove aqueous U(VI) in 5 min. and the efficiencies of green rust were roughly 2 times higher than that of vivianite. The zeta potential measurement results implies that the better performance of green rust might be attributed to the favorable surface charge toward uranyl phosphate species. The removal behaviors of the minerals were well fitted by pseudo-second order kinetic model (R2 > 0.990) indicating the dominant removal process was chemical adsorption. Effects of Ca2+ and CO32- at pH 7 were examined in terms of removal kinetic and capacity. The kinetic constants of aqueous U(VI) were 8 and 13 times lower (0.492 × 10-3 g/(mg·min); 0.305 × 10-3 g/(mg·min)) compared to the value in the absence of the ions. The thermodynamic equilibrium calculation showed that the stable uranyl species (uranyl tri-carbonate) were newly formed at the condition. Surface investigation on the reacted mineral with uranyl phosphates species were carried out by XPS. Ferrous iron and U(VI) on the green rust surface were completely oxidized and reduced into Fe(III) and U(IV) after 7 d. It suggests that the ferrous minerals can retard U(VI) migration in phosphate-rich groundwater through the adsorption and subsequent reduction processes.

키워드

과제정보

This work was supported by a National Research Foundation of Korea grant funded by the Korean government (MSIP) (No.2017M2A8A5015148).

참고문헌

  1. Aamrani, S.E., Gimenez, J., Rovira, M., Seco, F., Grive, M., Bruno, J., Duro, L. and Pablo, J. (2007), "A spectroscopic study of uranium(VI) interaction with magnetite", Appl. Surf. Sci., 253, 8794-8797. https://doi.org/10.1016/j.apsusc.2007.04.076.
  2. Alves, J., Carvalho, F.P., Falck, W.E., Madruga, M.J., Machado Leite, L.R., Read, D., Reis, M., Servant-Perrier, A.C. and Steyskal, S. (2004), "Environmental contamination from uranium production facilities and their remediation", IAEAL-05-00414.
  3. Amaral, E.C., Amundsen, I., Barisi, D., Booth, P., Clark, D.E., Ditmars, J., Dlouhy, Z., Drury, N., Gehrcke, K., Gnugnoli, G., Hagood, M., Jouve, A., McCallum, B., Lagerwaard, A., Loos, M., Martin, L., Phillips, M., Schaller, A., Slavik, O. and Stevenson, K. (1998), "Characterization of radioactively contaminated sites for remediation purposes", IAEA-TECDOC-1017.
  4. Aoba, T., Moreno E.C. and Shimoda, S. (1992) "Competitive adsorption of magnesium and calcium ions onto synthetic and biological apatites", Calcif. Tissue. Int., 51, 143-150. https://doi.org/10.1007/BF00298503.
  5. Bachmaf, S., Planer-Friedrich, B. and Merkel, B.J. (2008), "Effect of sulfate, carbonate, and phosphate on the uranium(VI) sorption behavior onto bentonite", Radiochim. Acta, 96, 359-366. https://doi.org/10.1524/ract.2008.1496.
  6. Bae, S., Sihn, Y., Kyung, D., Yoon, S., Eom, T., Kaplan, U., Kim, H., Schafer, T., Han, S. and Lee, W. (2018) "Molecular identification of Cr(VI) removal mechanism on vivianite surface", Environ. Sci. Technol., 52, 10647-10656. https://doi.org/10.1021/acs.est.8b01614.
  7. Bae, S. and Lee, W. (2012), "Enhanced reductive degradation of carbon tetrachloride by biogenic vivianite and Fe(II)", Geochim. Cosmochim. Ac., 85, 170-186. https://doi.org/10.1016/j.gca.2012.02.023.
  8. Bond, D.L. and Fendorf, S. (2003), "Kinetics and structural constraints of chromate reduction by green rust", Environ. Sci. Technol., 37, 2750-2757. https://doi.org/10.1021/es026341p.
  9. Cheng, T., Barnett, M.O., Roden, E.E. and Zhuang, J. (2007), "Reactive transport of uranium(VI) and phosphate in a goethite-coated sand column: An experimental study" Chemosphere, 68, 1218-1223. https://doi.org/10.1016/j.chemosphere.2007.01.063.
  10. Crane, R.A., Dickinson, M., Popescu, I.C. and Scott, T.B. (2011), "Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water", Water. Res., 45, 2931-2942. https://doi.org/10.1016/j.watres.2011.03.012.
  11. Das, D., Sureshkumar, M.K., Koley, S., Mithal, N. and Pillai, C.G.S. (2010), "Sorption of uranium on magnetite nanoparticles", J. Radioanal. Nucl. Chem., 285, 447-454. https://doi.org/10.1007/s10967-010-0627-0
  12. Descostes, M., Schlegel, M.L., Eglizaud, N., Descamps, F., Miserque, F. and Simoni, E. (2010), "Uptake of uranium and trace elements in pyrite ($FeS_{2}$) suspensions", Geochim. Cosmochim. Ac., 74, 1551-1562. https://doi.org/10.1016/j.gca.2009.12.004.
  13. Eglizaud, N., Miserque, F., Simoni, E., Schlegel, M. and Descostes, M. (2006) "Uranium(VI) interaction with pyrite (FeS2): Chemical and spectroscopic studies", Radiochim. Acta, 94, 651-656. https://doi.org/10.1524/ract.2006.94.9-11.651.
  14. Gallegos, T.J., Fuller, C.C., Webb, S.M. and Betterton, W. (2013), "Uranium(VI) interaction with mackinawite in the presence and absence of bicarbonate and oxygen", Environ. Sci. Technol., 47, 7357-7364. https://doi.org/10.1021/es400450z.
  15. Gavrilescu, M., Pavel, L.V. and Cretescu, I. (2009), "Characterization and remediation of soils contaminated with uranium", J. Hazard. Mater., 163, 475-510. https://doi.org/10.1016/j.jhazmat.2008.07.103.
  16. Ho, Y.S. and McKay, G. (1999) "Pseudo-second order model for sorption processes" Process Biochem., 34, 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
  17. Hua, B. and Deng, B. (2008), "Reductive immobilization of uranium(VI) by amorphous iron sulfide" Environ. Sci. Technol., 42, 8703-8708. https://doi.org/10.1021/es801225z.
  18. Hudson-Edwards, K.A., Houghton, S. and Taylor, K.G. (2008), "Efficiencies of As uptake from aqueous solution by a natural vivianite material at $4^{\circ}C$", Mineral. Mag., 72(1), 429-431. https://doi.org/10.1180/minmag.2008.072.1.429.
  19. Hyun, S. P., Davis, J.A., Sun, K. and Hayes, K.F. (2012), "Uranium(VI) reduction by iron(II) monosulfide mackinawite", Environ. Sci. Technol., 46, 3369-3376. https://doi.org/10.1021/es203786p.
  20. Jonsson, J. and Sherman, D.M. (2008), "Sorption of As(III) and As(V) to siderite, green rust (fougerite) and magnetite: Implications for arsenic release in anoxic groundwaters" Chem. Geol., 255, 173-181. https://doi.org/10.1016/j.chemgeo.2008.06.036.
  21. Livens, F.R., Jones, M.J., Hynes A.J., Charnock, J.M., Mosselmans, J.F.W., Hennig, C., Steele, H., Collison, D., Vaughan, D.J., Pattrick, R.A.D., Reed, W.A. and Moyes, L.N. (2004), "X-ray absorption spectroscopy studies of reactions of technetium, uranium and neptunium with mackinawite", J. Environ. Radioactiv., 74, 211-219. https://doi.org/10.1016/j.jenvrad.2004.01.012.
  22. Missana, T., Garcia-Gutierrez, M. and Fernndez, V. (2003), "Uranium(VI) sorption on colloidal magnetite under anoxic environment: Experimental study and surface complexation modelling", Geochim. Cosmochim. Ac., 67(14), 2543-2550. https://doi.org/10.1016/S0016-7037(02)01350-9.
  23. O'Loughlin, E.J., Kelly, S.D., Cook, R.E., Csencsits, R. and Kemner, K.M. (2003), "Reduction of uranium(VI) by mixed iron(II)/iron(III) hydroxide (Green rust): Formation of $UO_2$ nanoparticles", Environ. Sci. Technol., 37, 721-727. https://doi.org/10.1021/es0208409.
  24. O'Loughlin, E.J., Kelly, S.D. and Kemner, K.M. (2010), "XAFS investigation of the interactions of $U^{VI}$ with secondary mineralization products from the bioreduction of $Fe^{III}$ oxides" Environ. Sci. Technol., 44, 1656-1661. https://doi.org/10.1021/es9027953.
  25. O'Loughlin, E.J., Kelly, S.D., Kemner, K.M., Csencsits, R. and Cook, R.E. (2003) "Reduction of $Ag^I$, $Au^{III}$, $Cu^{II}$, and $Hg^{II}$ by $Fe^{II}/Fe^{III}$ hydroxysulfate green rust" Chemosphere, 53, 437-446. https://doi.org/10.1016/S0045-6535(03)00545-9.
  26. Payne, T.E., Davis, J.A. and Waite, T.D. (1996), "Uranium adsorption on ferrihydrite-effects of phosphate and humic acid" Radiochim. Acta, 74, 239-243. https://doi.org/10.1524/ract.1996.74.special-issue.239.
  27. Peterson, R.E., Rockhold, M.L., Serne, R.J., Thorne, P.D. and Williams, M.D. (2008), "Uranium contamination in the subsurface beneath the 300 area, Hanford site, Washington", Pacific Northwest National Lab, PNNL-17034; Richland, WA, U.S.A.
  28. Romero-Gonzalez, M.R., Cheng, T., Barnett, M.O. and Roden, E.E. (2007), "Surface complexation modeling of the effects of phosphate on uranium(VI) adsorption", Radiochim. Acta, 95, 251-259. https://doi.org/10.1524/ract.2007.95.5.251.
  29. Schellenger, A.E.P. and Larese-Casanova, P. (2013), "Oxygen isotope indicators of selenite reaction with Fe(II) and Fe(III) hydroxides", Environ. Sci. Technol., 47, 6254-6262 https://doi.org/10.1021/es4000033.
  30. Scott, T.B., Tort, O.R. and Allen, G.C. (2007), "Aqueous uptake of uranium onto pyrite surfaces; reactivity of fresh versus weathered material", Geochim. Cosmochim. Ac., 71, 5044-5053. https://doi.org/10.1016/j.gca.2007.08.017.
  31. Selvakumar, R., Ramadoss, G., Menon, M.P., Rajendran, K., Thavamani, P., Naidu, R. and Megharaj, M. (2018), "Challenges and complexities in remediation of uranium contaminated soils: A review", J. Environ. Radioactiv., 192, 592-603. https://doi.org/10.1016/j.jenvrad.2018.02.018.
  32. Sihn Y., Lee, Y. and Yun, J.I. (2016), "Laser spectroscopic characterization and quantification of uranium(VI) under fluorescence quenching by Fe(II)", J. Radioanal. Nucl. Chem., 308, 413-423. https://doi.org/10.1007/s10967-015-4428-3.
  33. Sihn, Y., Bae, S. and Lee, W. (2013) "Formation of surface mediated iron colloids during U(VI) and nZVI interaction", Adv. Environ. Res., 2(3), 167-177. http://dx.doi.org/10.12989/aer.2013.2.3.167
  34. Singh, A., Catalano, J.G., Ulrich, K.U. and Giammar, D.E. (2012), "Molecular-scale structure of uranium(VI) immobilized with goethite and phosphate", Environ. Sci. Technol., 46, 6594-6603. https://doi.org/10.1021/es300494x.
  35. Veeramani, H., Alessi, D.S., Suvorova, E.I., Lezama-Pacheco, J.S., Stubbs, J.E., Sharp, J.O., Dippon, U., Kappler, A., Bargar, J.R. and Bernier-Latmani, R. (2011), "Products of abiotic U(VI) reduction by biogenic magnetite and vivianite", Geochim. Cosmochim. Ac., 75, 2512-2528. https://doi.org/10.1016/j.gca.2011.02.024.
  36. Wazne, M., Korfiatis, G.P. and Meng, X. (2003) "Carbonate effects on hexavalent uranium adsorption by iron-oxyhydroxide", Environ. Sci. Technol., 37, 3619-3624. https://doi.org/10.1021/es034166m.