DOI QR코드

DOI QR Code

FINITELY GENERATED G-PROJECTIVE MODULES OVER PVMDS

  • Hu, Kui (College of Science Southwest University of Science and Technology) ;
  • Lim, Jung Wook (Department of Mathematics Kyungpook National University) ;
  • Xing, Shiqi (College of Applied Mathematics Chengdu University of Information Technology)
  • Received : 2019.05.28
  • Accepted : 2019.09.05
  • Published : 2020.05.31

Abstract

Let M be a finitely generated G-projective R-module over a PVMD R. We prove that M is projective if and only if the canonical map θ : M⨂R M → HomR(HomR(M, M), R) is a surjective homomorphism. Particularly, if G-gldim(R) ⩽ ∞ and ExtiR(M, M) = 0 (i ⩾ 1), then M is projective.

Keywords

References

  1. F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1974.
  2. D. Bennis, A note on Gorenstein global dimension of pullback rings, Int. Electron. J. Algebra 8 (2010), 30-44.
  3. D. Bennis and N. Mahdou, A generalization of strongly Gorenstein projective modules, J. Algebra Appl. 8 (2009), no. 2, 219-227. https://doi.org/10.1142/S021949880900328X
  4. D. Bennis and N. Mahdou, Gorenstein global dimensions and cotorsion dimension of rings, Comm. Algebra 37 (2009), no. 5, 1709-1718. https://doi.org/10.1080/00927870802210050
  5. D. Bennis and N. Mahdou, Global Gorenstein dimensions, Proc. Amer. Math. Soc. 138 (2010), no. 2, 461-465. https://doi.org/10.1090/S0002-9939-09-10099-0
  6. D. Bennis and K. Ouarghi, Self-orthogonality and Gorenstein projectivity, Int. J. Contemp. Math. Sci. 5 (2010), no. 1-4, 61-66.
  7. D. J. Benson and K. R. Goodearl, Periodic flat modules, and flat modules for finite groups, Pacific J. Math. 196 (2000), no. 1, 45-67. https://doi.org/10.2140/pjm.2000.196.45
  8. N. Ding and J. Chen, The flat dimensions of injective modules, Manuscripta Math. 78 (1993), no. 2, 165-177. https://doi.org/10.1007/BF02599307
  9. N. Ding and J. Chen, Coherent rings with finite self-FP-injective dimension, Comm. Algebra 24 (1996), no. 9, 2963-2980. https://doi.org/10.1080/00927879608825724
  10. E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995), no. 4, 611-633. https://doi.org/10.1007/BF02572634
  11. Z. Gao, Weak Gorenstein projective, injective and flat modules, J. Algebra Appl. 12 (2013), no. 2, 1250165, 15 pp. https://doi.org/10.1142/S0219498812501654
  12. J. Gillespie, Model structures on modules over Ding-Chen rings, Homology Homotopy Appl. 12 (2010), no. 1, 61-73. http://projecteuclid.org/euclid.hha/1296223822 https://doi.org/10.4310/HHA.2010.v12.n1.a6
  13. I. Kaplansky, Commutative Rings, revised edition, The University of Chicago Press, Chicago, IL, 1974.
  14. T. Y. Lam, Exercises in Modules and Rings, Problem Books in Mathematics, Springer, New York, 2007. https://doi.org/10.1007/978-0-387-48899-8
  15. J. J. Rotman, An Introduction to Homological Algebra, second edition, Universitext, Springer, New York, 2009. https://doi.org/10.1007/b98977
  16. B. Stenstrom, Coherent rings and F P-injective modules, J. London Math. Soc. (2) 2 (1970), 323-329. https://doi.org/10.1112/jlms/s2-2.2.323
  17. F Wang, Commutative Rings and Star Operation Theory, (in Chinese), Beijing, Science Press, 2006.
  18. F. Wang and H. Kim, Foundations of commutative rings and their modules, Algebra and Applications, 22, Springer, Singapore, 2016. https://doi.org/10.1007/978-981-10-3337-7
  19. F. Wang and R. L. McCasland, On w-modules over strong Mori domains, Comm. Algebra 25 (1997), no. 4, 1285-1306. https://doi.org/10.1080/00927879708825920
  20. F. Wang, L. Qiao, and H. Kim, Super finitely presented modules and Gorenstein projective modules, Comm. Algebra 44 (2016), no. 9, 4056-4072. https://doi.org/10.1080/00927872.2015.1087532
  21. H. Yin, F. Wang, X. Zhu, and Y. Chen, w-modules over commutative rings, J. Korean Math. Soc. 48 (2011), no. 1, 207-222. https://doi.org/10.4134/JKMS.2011.48.1.207
  22. M. Zafrullah, On finite conductor domains, Manuscripta Math. 24 (1978), no. 2, 191-204. https://doi.org/10.1007/BF01310053