참고문헌
- R. F. Allen and F. Colonna, Weighted composition operators on the Bloch space of a bounded homogeneous domain, in Topics in operator theory. Volume 1. Operators, matrices and analytic functions, 11-37, Oper. Theory Adv. Appl., 202, Birkhauser Verlag, Basel, 2010. https://doi.org/10.1007/978-3-0346-0158-0_2
- R. F. Allen and F. Colonna, Weighted composition operators from H1 to the Bloch space of a bounded homogeneous domain, Integral Equations Operator Theory 66 (2010), no. 1, 21-40. https://doi.org/10.1007/s00020-009-1736-4
- F. Colonna and S. Li, Weighted composition operators from the minimal Mobius invariant space into the Bloch space, Mediterr. J. Math. 10 (2013), no. 1, 395-409. https://doi.org/10.1007/s00009-012-0182-8
- C. C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995.
- K. Esmaeili and M. Lindstrom, Weighted composition operators between Zygmund type spaces and their essential norms, Integral Equations Operator Theory 75 (2013), no. 4, 473-490.http://doi.org/10.1007/s00020-013-2038-4
- W. He and L. Jiang, Composition operator on Bers-type spaces, Acta Math. Sci. Ser. B (Engl. Ed.) 22 (2002), no. 3, 404-412. https://doi.org/10.1016/S0252-9602(17)30310-7
- L. Jiang and Y. Li, Bers-type spaces and composition operators, Northeast. Math. J. 18 (2002), no. 3, 223-232. https://doi.org/10.3969/j.issn.1674-5647.2002.03.005
- Z. Jiang, Composition operators from weighted Bergman spaces to some spaces of analytic functions on the upper half-plane, Util. Math. 93 (2014), 205-212.
- Z. Jiang, On a product-type operator from weighted Bergman-Orlicz space to some weighted type spaces, Appl. Math. Comput. 256 (2015), 37-51. https://doi.org/10.1016/j.amc.2015.01.025
- A. S. Kucik, Weighted composition operators on spaces of analytic functions on the complex half-plane, Complex Anal. Oper. Theory 12 (2018), no. 8, 1817-1833. https://doi.org/10.1007/s11785-017-0677-1
- S. Li and S. Stevic, Weighted composition operators from Bergman-type spaces into Bloch spaces, Proc. Indian Acad. Sci. Math. Sci. 117 (2007), no. 3, 371-385. https://doi.org/10.1007/s12044-007-0032-y
- S. Li and S. Stevic, Weighted composition operators from H1 to the Bloch space on the polydisc, Abstr. Appl. Anal. 2007 (2007), Art. ID 48478, 13 pp. https://doi.org/10.1155/2007/48478
-
L. Luo and S. Ueki, Weighted composition operators between weighted Bergman spaces and Hardy spaces on the unit ball of
${\mathbb{C}}^n$ , J. Math. Anal. Appl. 326 (2007), no. 1, 88-100. https://doi.org/10.1016/j.jmaa.2006.02.038 -
S. Ohno, Weighted composition operators between
$H^{\infty}$ and the Bloch space, Taiwanese J. Math. 5 (2001), no. 3, 555-563. https://doi.org/10.11650/twjm/1500574949 -
S. Stevic, Essential norms of weighted composition operators from the
${\alpha}$ -Bloch space to a weighted-type space on the unit ball, Abstr. Appl. Anal. 2008 (2008), Art. ID 279691, 11 pp. https://doi.org/10.1155/2008/279691 -
S. Stevic, Norm of weighted composition operators from Bloch space to
$H_{\mu}^{\infty}$ on the unit ball, Ars Combin. 88 (2008), 125-127. -
S. Stevic, Norm of weighted composition operators from
${\alpha}$ -Bloch spaces to weighted-type spaces, Appl. Math. Comput. 215 (2009), no. 2, 818-820. https://doi.org/10.1016/j.amc.2009.06.005 - S. Stevic, Weighted composition operators from Bergman-Privalov-type spaces to weighted-type spaces on the unit ball, Appl. Math. Comput. 217 (2010), no. 5, 1939-1943. https://doi.org/10.1016/j.amc.2010.06.049
- S. Stevic, R. Chen, and Z. Zhou, Weighted composition operators between Bloch type spaces in the polydisc, Sb. Math. 201 (2010), no. 1-2, 289-319; translated from Mat. Sb. 201 (2010), no. 2, 131-160. https://doi.org/10.1070/SM2010v201n02ABEH004073
- S. Stevic and Zh. J. Jiang, Differences of weighted composition operators on the unit polydisk, Sib. Math. J. 52 (2011), no. 2, 358-371; translated from Sibirsk. Mat. Zh. 52 (2011), no. 2, 454-468. https://doi.org/10.1134/S0037446611020200
- S. Stevic and A. K. Sharma, Weighted composition operators between growth spaces of the upper half-plane, Util. Math. 84 (2011), 265-272.
- S. Stevic and A. K. Sharma, Weighted composition operators between Hardy and growth spaces on the upper half-plane, Appl. Math. Comput. 217 (2011), no. 10, 4928-4934. https://doi.org/10.1016/j.amc.2010.11.041
- W. Yin, The Bergman kernels on super-Cartan domains of the first type, Sci. China Ser. A 43 (2000), no. 1, 13-21. https://doi.org/10.1007/BF02903843
- W. Yin, A. Wang, Zh. G. Zhao, and B. X. Guan, Computations of Bergman kernels on Hua domains, Adv. Math. (China) 30 (2001), no. 2, 185-188. https://doi.org/10.3969/j.issn.1000-0917.2001.02.014
- K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics, 226, Springer-Verlag, New York, 2005.