References
- H.E. McCoy, J.R. Weir, Influence of irradiation on the tensile properties of the aluminum alloy 6061, Nucl. Sci. Eng. 25 (1966) 319-327. https://doi.org/10.13182/NSE66-A18551
- D.B. Lee, K.H. Kim, C.K. Kim, Thermal compatibility studies of unirradiated-Mo alloys dispersed in aluminum, J. Nucl. Mater. 250 (1997) 79-82. https://doi.org/10.1016/S0022-3115(97)00252-3
- M.K. Meyer, G.L. Hofman, S.L. Hayes, et al., Low-temperature irradiation behavior of uraniumemolybdenum alloy dispersion fuel, J. Nucl. Mater. 304 (2002) 221-236. https://doi.org/10.1016/S0022-3115(02)00850-4
- J. Park, K. Kim, C. Kim, et al., The irradiation behavior of atomized U-Mo alloy fuels at high temperature, Met. Mater. Int. 7 (2001) 151-157. https://doi.org/10.1007/BF03026953
- M.K. MEYER, J. GAN, J.F. JUE, et al., IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL, Nucl. Eng. Technol. 46 (2014) 169-182. https://doi.org/10.5516/NET.07.2014.706
- J.L. Schulthess, W.R. Lloyd, B. Rabin, et al., Mechanical properties of irradiated U Mo alloy fuel, J. Nucl. Mater. 515 (2019) 91-106. https://doi.org/10.1016/j.jnucmat.2018.12.025
- S. Hu, A.M. Casella, C.A. Lavender, et al., Assessment of effective thermal conductivity in UeMo metallic fuels with distributed gas bubbles, J. Nucl. Mater. 462 (2015) 64-76. https://doi.org/10.1016/j.jnucmat.2015.03.039
- D.E. Burkes, A.M. Casella, A.J. Casella, et al., Thermal properties of UeMo alloys irradiated to moderate burnup and power, J. Nucl. Mater. 464 (2015) 331-341. https://doi.org/10.1016/j.jnucmat.2015.04.040
- G.Y. Jeong, Y.S. Kim, Y.J. Jeong, et al., Development of PRIME for irradiation performance analysis of U-Mo/Al dispersion fuel, J. Nucl. Mater. 502 (2018) 331-348. https://doi.org/10.1016/j.jnucmat.2018.02.028
- Q. Meng, Z. Wang, Creep damage models and their applications for crack growth analysis in pipes: a review, Eng. Fract. Mech. 205 (2019) 547-576. https://doi.org/10.1016/j.engfracmech.2015.09.055
- X. Du, Z. Jie, L. Yinghua, Plastic failure analysis of defective pipes with creep damage under multi-loading systems, Int. J. Mech. Sci. 128-129 (2017) 428-444. https://doi.org/10.1016/j.ijmecsci.2017.04.028
- J.F. Mao, J.W. Zhu, S.Y. Bao, et al., Creep deformation and damage behavior of reactor pressure vessel under core meltdown scenario, Int. J. Press. Vessel. Pip. 139-140 (2016) 107-116. https://doi.org/10.1016/j.ijpvp.2016.03.009
- X. Jian, X. Kong, S. Ding, A mesoscale stress model for irradiated U-10Mo monolithic fuels based on evolution of volume fraction/radius/internal pressure of bubbles, Nucl. Eng. Technol. 51 (2019) 1571-1588.
- J. Jue, D.D. Keiser, B.D. Miller, et al., Effects of irradiation on the interface between U-Mo and zirconium diffusion barrier, J. Nucl. Mater. 499 (2018) 567-581. https://doi.org/10.1016/j.jnucmat.2017.10.072
- A.M. Casella, D.E. Burkes, P.J. MacFarlan, et al., Characterization of fission gas bubbles in irradiated U-10Mo fuel, Mater. Char. 131 (2017) 459-471. https://doi.org/10.1016/j.matchar.2017.06.007
- F. Yan, J. Xiaobin, D. Shurong, Effects of UMo irradiation creep on the thermomechanical behavior in monolithic UMo/Al fuel plates, J. Nucl. Mater. 524 (2019) 209-217. https://doi.org/10.1016/j.jnucmat.2019.07.006
- Y.S. Kim, G.L. Hofman, J.S. Cheon, et al., Fission induced swelling and creep of UeMo alloy fuel, J. Nucl. Mater. 437 (2013) 37-46. https://doi.org/10.1016/j.jnucmat.2013.01.346
- Y.S. Kim, G.L. Hofman, Fission product induced swelling of UeMo alloy fuel, J. Nucl. Mater. 419 (2011) 291-301. https://doi.org/10.1016/j.jnucmat.2011.08.018
- X. Kong, X. Tian, F. Yan, et al., Thermo-mechanical behavior simulation coupled with the hydrostatic-pressure-dependent grain-scale fission gas swelling calculation for a monolithic UMo fuel plate under heterogeneous neutron irradiation, Open Eng. 8 (2018) 243-260. https://doi.org/10.1515/eng-2018-0029
- H. Ozaltun, M.H. Herman Shen, P. Medvedev, Assessment of residual stresses on U10Mo alloy based monolithic mini-plates during Hot Isostatic Pressing, J. Nucl. Mater. 419 (2011) 76-84. https://doi.org/10.1016/j.jnucmat.2011.08.029
- C. Ayyanar, M. Suresh, P.V. ArunRaj, et al., Modeling and creep strain analysis of aluminum alloy 6061-T6 by creep tensile test, Mater. Today: Proc. 5 (2018) 14345-14354. https://doi.org/10.1016/j.matpr.2018.03.018
- J. Jue, D.D. Keiser, C.R. Breckenridge, et al., Microstructural characteristics of HIP-bonded monolithic nuclear fuels with a diffusion barrier, J. Nucl. Mater. 448 (2014) 250-258. https://doi.org/10.1016/j.jnucmat.2014.02.004
- J. Rest, A model for the effect of the progression of irradiation-induced recrystallization from initiation to completion on swelling of UO2 and Ue10Mo nuclear fuels, J. Nucl. Mater. 346 (2005) 226-232. https://doi.org/10.1016/j.jnucmat.2005.06.012
- M.F. Marchbanks, ANS materials databook, ORNL (1995). ORNL/M-4582.
- J. Rest, Y.S. Kim, G.L. Hofman, et al., U-mo Fuels Handbook. Argonne National Laboratory Report ANL-09/31, 2009. Chicago, Illinois.
- J. Webb, S. Gollapudi, I. Charit, An overview of creep in tungsten and its alloys, Int. J. Refract. Metals Hard Mater. 82 (2019) 69-80. https://doi.org/10.1016/j.ijrmhm.2019.03.022
- J. Hu, T. Fukahori, T. Igari, et al., Modelling of creep rupture of ferritic/austenitic dissimilar weld interfaces under mode I fracture, Eng. Fract. Mech. 191 (2018) 344-364. https://doi.org/10.1016/j.engfracmech.2018.01.001
Cited by
- Thermal-fluid-structure coupling analysis on plate-type fuel assembly under irradiation. Part-II Mechanical deformation and thermal-hydraulic characteristics vol.53, pp.5, 2020, https://doi.org/10.1016/j.net.2020.11.031
- The role of MgO nanoparticles addition, and γ-irradiation on the microstructural, and tensile properties of Al-1100 alloy vol.55, pp.16, 2020, https://doi.org/10.1177/0021998320983411
- Creep fracture parameter C* solutions for semi‐elliptical surface cracks in plates under tensile and bending loads vol.45, pp.1, 2020, https://doi.org/10.1111/ffe.13576
- A new method to simulate dispersion plate-type fuel assembly in a multi-physics coupled way vol.166, 2020, https://doi.org/10.1016/j.anucene.2021.108734