Abstract
Research reactors in-core experimental facilities are designed to provide the highest steady state flux for user's irradiation requirements. However, fuel conversion from highly enriched uranium (HEU) to low enriched uranium (LEU) driven by the ongoing effort to diminish proliferation risk, will impact reactor physics parameters. Preserving the reactor capability to produce the needed flux to perform its intended research functions, determines the conversion feasibility. This study investigates the neutron flux in the central experimental facility of two material test reactors (MTR), the IAEA generic10 MW benchmark reactor and the 22 MW s Egyptian Test and Research Reactor (ETRR-2). A 3D full core model with three uranium enrichment of 93%, 45%, and 20% was constructed utilizing the OpenMC particle transport Monte Carlo code. Neutronics calculations were performed for fresh fuel, the beginning of life cycle (BOL) and end of life cycle (EOL) for each of the three enrichments for both the IAEA 10 MW generic reactor and core 1/98 of the ETRR-2 reactor. Criticality calculations of the effective multiplication factor (Keff) were executed for each of the twelve cases; results show a reasonable agreement with published benchmark values for both reactors. The thermal, epithermal and fast neutron fluxes were tallied across the core, utilizing the mesh tally capability of the code and are presented here. The axial flux in the central experimental facility was tallied at 1 cm intervals, for each of the cases; results for IAEA 10 MW show a maximum reduction of 14.32% in the thermal flux of LEU to that of the HEU, at EOL. The reduction of the thermal flux for fresh fuel was between 5.81% and 9.62%, with an average drop of 8.1%. At the BOL the thermal flux showed a larger reduction range of 6.92%-13.58% with an average drop of 10.73%. Furthermore, the fission reaction rate was calculated, results showed an increase in the peak fission rate of the LEU case compared to the HEU case. Results for the ETRR-2 reactor show an average increase of 62.31% in the thermal flux of LEU to that of the HEU due to the effect of spectrum hardening. The fission rate density increased with enrichment, resulting in 34% maximum increase in the HEU case compared to the LEU case at the assemblies surrounding the flux trap.