References
- Yang Y, Chan L. Monogenic diabetes: what it teaches us on the common forms of type 1 and type 2 diabetes. Endocr Rev 2016;37:190-222. https://doi.org/10.1210/er.2015-1116
- Steck AK, Winter WE. Review on monogenic diabetes. Curr Opin Endocrinol Diabetes Obes 2011;18:252-8. https://doi.org/10.1097/MED.0b013e3283488275
- Tattersall RB. Mild familial diabetes with dominant inheritance. Q J Med 1974;43:339-57.
- Ellard S, Bellanne-Chantelot C, Hattersley AT; European Molecular Genetics Quality Network (EMQN) MODY group. Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young. Diabetologia 2008; 51:546-53. https://doi.org/10.1007/s00125-008-0942-y
- Froguel P, Vaxillaire M, Sun F, Velho G, Zouali H, Butel MO, et al. Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulin-dependent diabetes mellitus. Nature 1992;356:162-4. https://doi.org/10.1038/356162a0
- Yamagata K, Furuta H, Oda N, Kaisaki PJ, Menzel S, Cox NJ, et al. Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). Nature 1996; 384:458-60. https://doi.org/10.1038/384458a0
- Horikawa Y, Iwasaki N, Hara M, Furuta H, Hinokio Y, Cockburn BN, et al. Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet 1997;17: 384-5. https://doi.org/10.1038/ng1297-384
- Kim SH. Maturity-onset diabetes of the young: what do clinicians need to know? Diabetes Metab J 2015;39:468-77. https://doi.org/10.4093/dmj.2015.39.6.468
- Prudente S, Jungtrakoon P, Marucci A, Ludovico O, Buranasupkajorn P, Mazza T, et al. Loss-of-function mutations in appl1 in familial diabetes mellitus. Am J Hum Genet 2015;97:177-85. https://doi.org/10.1016/j.ajhg.2015.05.011
- Urakami T. Maturity-onset diabetes of the young (MODY): current perspectives on diagnosis and treatment. Diabetes Metab Syndr Obes 2019;12:1047-56. https://doi.org/10.2147/DMSO.S179793
- Henzen C. Monogenic diabetes mellitus due to defects in insulin secretion. Swiss Med Wkly 2012;142:w13690.
- Shepherd M, Shields B, Hammersley S, Hudson M, McDonald TJ, Colclough K, et al. Systematic population screening, using biomarkers and genetic testing, identifies 2.5% of the U.K. pediatric diabetes population with monogenic diabetes. Diabetes Care 2016;39:1879-88. https://doi.org/10.2337/dc16-0645
- Fajans SS, Bell GI, Polonsky KS. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl J Med 2001;345:971-80. https://doi.org/10.1056/NEJMra002168
- Shields BM, Hicks S, Shepherd MH, Colclough K, Hattersley AT, Ellard S. Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia 2010;53:2504-8. https://doi.org/10.1007/s00125-010-1799-4
- Osbak KK, Colclough K, Saint-Martin C, Beer NL, Bellanne-Chantelot C, Ellard S, et al. Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum Mutat 2009;30:1512-26. https://doi.org/10.1002/humu.21110
- Steele AM, Wensley KJ, Ellard S, Murphy R, Shepherd M, Colclough K, et al. Use of HbA1c in the identification of patients with hyperglycaemia caused by a glucokinase mutation: observational case control studies. PLoS One 2013;8:e65326. https://doi.org/10.1371/journal.pone.0065326
- Kavvoura FK, Owen KR. Maturity onset diabetes of the young: clinical characteristics, diagnosis and management. Pediatr Endocrinol Rev 2012-2013;10:234-42.
- Estalella I, Rica I, Perez de Nanclares G, Bilbao JR, Vazquez JA, San Pedro JI, et al. Mutations in GCK and HNF-1alpha explain the majority of cases with clinical diagnosis of MODY in Spain. Clin Endocrinol (Oxf) 2007;67:538-46. https://doi.org/10.1111/j.1365-2265.2007.02921.x
- Codner E, Rocha A, Deng L, Martinez-Aguayo A, Godoy C, Mericq V, et al. Mild fasting hyperglycemia in children: high rate of glucokinase mutations and some risk of developing type 1 diabetes mellitus. Pediatr Diabetes 2009;10:382-8. https://doi.org/10.1111/j.1399-5448.2009.00499.x
- Hwang JS, Shin CH, Yang SW, Jung SY, Huh N. Genetic and clinical characteristics of Korean maturity-onset diabetes of the young (MODY) patients. Diabetes Res Clin Pract 2006;74:75-81. https://doi.org/10.1016/j.diabres.2006.03.002
- McDonald TJ, Ellard S. Maturity onset diabetes of the young: identification and diagnosis. Ann Clin Biochem 2013;50:403-15. https://doi.org/10.1177/0004563213483458
- Pontoglio M, Sreenan S, Roe M, Pugh W, Ostrega D, Doyen A, et al. Defective insulin secretion in hepatocyte nuclear factor 1alpha-deficient mice. J Clin Invest 1998;101:2215-22. https://doi.org/10.1172/JCI2548
- Boileau P, Wolfrum C, Shih DQ, Yang TA, Wolkoff AW, Stoffel M, et al. Decreased glibenclamide uptake in hepatocytes of hepatocyte nuclear factor-1alpha-deficient mice: a mechanism for hypersensitivity to sulfonylurea therapy in patients with maturity-onset diabetes of the young, type 3 (MODY3). Diabetes 2002;51(Suppl 3):S343-8. https://doi.org/10.2337/diabetes.51.2007.S343
- Hattersley AT, Greeley SA, Polak M, Rubio-Cabezas O, Njolstad PR, Mlynarski W, et al. ISPAD Clinical Practice Consensus Guidelines 2018: the diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes 2018; 19(Suppl 27):47-63. https://doi.org/10.1111/pedi.12772
- Colclough K, Bellanne-Chantelot C, Saint-Martin C, Flanagan SE, Ellard S. Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha and 4 alpha in maturity-onset diabetes of the young and hyperinsulinemic hypoglycemia. Hum Mutat 2013;34:669-85. https://doi.org/10.1002/humu.22279
- Ellard S, Colclough K. Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha (HNF1A) and 4 alpha (HNF4A) in maturity-onset diabetes of the young. Hum Mutat 2006;27:854-69. https://doi.org/10.1002/humu.20357
- Yamagata K, Nammo T, Moriwaki M, Ihara A, Iizuka K, Yang Q, et al. Overexpression of dominant-negative mutant hepatocyte nuclear fctor-1 alpha in pancreatic beta-cells causes abnormal islet architecture with decreased expression of E-cadherin, reduced beta-cell proliferation, and diabetes. Diabetes 2002; 51:114-23. https://doi.org/10.2337/diabetes.51.1.114
- Shepherd M, Ellis I, Ahmad AM, Todd PJ, Bowen-Jones D, Mannion G, et al. Predictive genetic testing in maturity-onset diabetes of the young (MODY). Diabet Med 2001;18:417-21. https://doi.org/10.1046/j.1464-5491.2001.00447.x
- Pontoglio M, Prie D, Cheret C, Doyen A, Leroy C, Froguel P, et al. HNF1alpha controls renal glucose reabsorption in mouse and man. EMBO Rep 2000;1:359-65. https://doi.org/10.1093/embo-reports/kvd071
- Steele AM, Shields BM, Shepherd M, Ellard S, Hattersley AT, Pearson ER. Increased all-cause and cardiovascular mortality in monogenic diabetes as a result of mutations in the HNF1A gene. Diabet Med 2010;27:157-61. https://doi.org/10.1111/j.1464-5491.2009.02913.x
- Pearson ER, Pruhova S, Tack CJ, Johansen A, Castleden HA, Lumb PJ, et al. Molecular genetics and phenotypic characteristics of MODY caused by hepatocyte nuclear factor 4alpha mutations in a large European collection. Diabetologia 2005; 48:878-85. https://doi.org/10.1007/s00125-005-1738-y
- Pearson ER, Liddell WG, Shepherd M, Corrall RJ, Hattersley AT. Sensitivity to sulphonylureas in patients with hepatocyte nuclear factor-1alpha gene mutations: evidence for pharmacogenetics in diabetes. Diabet Med 2000;17:543-5. https://doi.org/10.1046/j.1464-5491.2000.00305.x
- Shepherd M, Pearson ER, Houghton J, Salt G, Ellard S, Hattersley AT. No deterioration in glycemic control in HNF-1alpha maturity-onset diabetes of the young following transfer from long-term insulin to sulphonylureas. Diabetes Care 2003; 26:3191-2.
- Shepherd M, Shields B, Ellard S, Rubio-Cabezas O, Hattersley AT. A genetic diagnosis of HNF1A diabetes alters treatment and improves glycaemic control in the majority of insulin-treated patients. Diabet Med 2009;26:437-41. https://doi.org/10.1111/j.1464-5491.2009.02690.x
- Stoffel M, Duncan SA. The maturity-onset diabetes of the young (MODY1) transcription factor HNF4alpha regulates expression of genes required for glucose transport and metabolism. Proc Natl Acad Sci U S A 1997;94:13209-14. https://doi.org/10.1073/pnas.94.24.13209
- Frayling TM, Evans JC, Bulman MP, Pearson E, Allen L, Owen K, et al. beta-cell genes and diabetes: molecular and clinical characterization of mutations in transcription factors. Diabetes 2001;50(Suppl 1):S94-100. https://doi.org/10.2337/diabetes.50.2007.S94
- Lehto M, Bitzen PO, Isomaa B, Wipemo C, Wessman Y, Forsblom C, et al. Mutation in the HNF-4alpha gene affects insulin secretion and triglyceride metabolism. Diabetes 1999;48:423-5. https://doi.org/10.2337/diabetes.48.2.423
- Barbacci E, Reber M, Ott MO, Breillat C, Huetz F, Cereghini S. Variant hepatocyte nuclear factor 1 is required for visceral endoderm specification. Development 1999;126:4795-805. https://doi.org/10.1242/dev.126.21.4795
- Bingham C, Ellard S, Allen L, Bulman M, Shepherd M, Frayling T, et al. Abnormal nephron development associated with a frameshift mutation in the transcription factor hepatocyte nuclear factor-1 beta. Kidney Int 2000;57:898-907. https://doi.org/10.1046/j.1523-1755.2000.057003898.x
- Edghill EL, Oram RA, Owens M, Stals KL, Harries LW, Hattersley AT, et al. Hepatocyte nuclear factor-1beta gene deletions: a common cause of renal disease. Nephrol Dial Transplant 2008; 23:627-35. https://doi.org/10.1093/ndt/gfm603
- Bingham C, Bulman MP, Ellard S, Allen LI, Lipkin GW, Hoff WG, et al. Mutations in the hepatocyte nuclear factor-1beta gene are associated with familial hypoplastic glomerulocystic kidney disease. Am J Hum Genet 2001;68:219-24. https://doi.org/10.1086/316945
- Bellanne-Chantelot C, Chauveau D, Gautier JF, Dubois-Laforgue D, Clauin S, Beaufils S, et al. Clinical spectrum associated with hepatocyte nuclear factor-1beta mutations. Ann Intern Med 2004;140:510-7. https://doi.org/10.7326/0003-4819-140-7-200404060-00009
- Edghill EL, Bingham C, Slingerland AS, Minton JA, Noordam C, Ellard S, et al. Hepatocyte nuclear factor-1 beta mutations cause neonatal diabetes and intrauterine growth retardation: support for a critical role of HNF-1beta in human pancreatic development. Diabet Med 2006;23:1301-6. https://doi.org/10.1111/j.1464-5491.2006.01999.x
- Cerf ME. Transcription factors regulating beta-cell function. Eur J Endocrinol 2006;155:671-9. https://doi.org/10.1530/eje.1.02277
- Gragnoli C, Stanojevic V, Gorini A, von Preussenthal GM, Thomas MK, Habener JF. IPF-1/MODY4 gene missense mutation in an Italian family with type 2 and gestational diabetes. Metabolism 2005;54:983-8. https://doi.org/10.1016/j.metabol.2005.01.037
- Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 1997;15: 106-10. https://doi.org/10.1038/ng0197-106
- Nicolino M, Claiborn KC, Senee V, Boland A, Stoffers DA, Julier C. A novel hypomorphic PDX1 mutation responsible for permanent neonatal diabetes with subclinical exocrine deficiency. Diabetes 2010;59:733-40. https://doi.org/10.2337/db09-1284
- Rubio-Cabezas O, Minton JA, Kantor I, Williams D, Ellard S, Hattersley AT. Homozygous mutations in NEUROD1 are responsible for a novel syndrome of permanent neonatal diabetes and neurological abnormalities. Diabetes 2010;59:2326-31. https://doi.org/10.2337/db10-0011
- Neve B, Fernandez-Zapico ME, Ashkenazi-Katalan V, Dina C, Hamid YH, Joly E, et al. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function. Proc Natl Acad Sci U S A 2005;102:4807-12. https://doi.org/10.1073/pnas.0409177102
- Raeder H, Johansson S, Holm PI, Haldorsen IS, Mas E, Sbarra V, et al. Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction. Nat Genet 2006; 38:54-62. https://doi.org/10.1038/ng1708
- Torsvik J, Johansson S, Johansen A, Ek J, Minton J, Raeder H, et al. Mutations in the VNTR of the carboxyl-ester lipase gene (CEL) are a rare cause of monogenic diabetes. Hum Genet 2010;127:55-64. https://doi.org/10.1007/s00439-009-0740-8
- Jonsson J, Carlsson L, Edlund T, Edlund H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 1994;371:606-9. https://doi.org/10.1038/371606a0
- Plengvidhya N, Kooptiwut S, Songtawee N, Doi A, Furuta H, Nishi M, et al. PAX4 mutations in Thais with maturity onset diabetes of the young. J Clin Endocrinol Metab 2007;92:2821-6. https://doi.org/10.1210/jc.2006-1927
- Edghill EL, Flanagan SE, Patch AM, Boustred C, Parrish A, Shields B, et al. Insulin mutation screening in 1,044 patients with diabetes: mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. Diabetes 2008;57:1034-42. https://doi.org/10.2337/db07-1405
- Borowiec M, Liew CW, Thompson R, Boonyasrisawat W, Hu J, Mlynarski WM, et al. Mutations at the BLK locus linked to maturity onset diabetes of the young and beta-cell dysfunction. Proc Natl Acad Sci U S A 2009;106:14460-5. https://doi.org/10.1073/pnas.0906474106
- Kapoor RR, Flanagan SE, James C, Shield J, Ellard S, Hussain K. Hyperinsulinaemic hypoglycaemia. Arch Dis Child 2009;94: 450-7. https://doi.org/10.1136/adc.2008.148171
- Bowman P, Flanagan SE, Edghill EL, Damhuis A, Shepherd MH, Paisey R, et al. Heterozygous ABCC8 mutations are a cause of MODY. Diabetologia 2012;55:123-7. https://doi.org/10.1007/s00125-011-2319-x
- Liu L, Nagashima K, Yasuda T, Liu Y, Hu HR, He G, et al. Mutations in KCNJ11 are associated with the development of autosomal dominant, early-onset type 2 diabetes. Diabetologia 2013;56:2609-18. https://doi.org/10.1007/s00125-013-3031-9
- Thanabalasingham G, Pal A, Selwood MP, Dudley C, Fisher K, Bingley PJ, et al. Systematic assessment of etiology in adults with a clinical diagnosis of young-onset type 2 diabetes is a successful strategy for identifying maturity-onset diabetes of the young. Diabetes Care 2012;35:1206-12. https://doi.org/10.2337/dc11-1243
- Vaxillaire M, Froguel P. Monogenic diabetes in the young, pharmacogenetics and relevance to multifactorial forms of type 2 diabetes. Endocr Rev 2008;29:254-64. https://doi.org/10.1210/er.2007-0024
- Shields BM, McDonald TJ, Ellard S, Campbell MJ, Hyde C, Hattersley AT. The development and validation of a clinical prediction model to determine the probability of MODY in patients with young-onset diabetes. Diabetologia 2012;55:1265-72. https://doi.org/10.1007/s00125-011-2418-8
- Besser RE, Shepherd MH, McDonald TJ, Shields BM, Knight BA, Ellard S, et al. Urinary C-peptide creatinine ratio is a practical outpatient tool for identifying hepatocyte nuclear factor 1-{alpha}/hepatocyte nuclear factor 4-{alpha} maturity-onset diabetes of the young from long-duration type 1 diabetes. Diabetes Care 2011;34:286-91. https://doi.org/10.2337/dc10-1293
- Reiner AP, Barber MJ, Guan Y, Ridker PM, Lange LA, Chasman DI, et al. Polymorphisms of the HNF1A gene encoding hepatocyte nuclear factor-1 alpha are associated with C-reactive protein. Am J Hum Genet 2008;82:1193-201. https://doi.org/10.1016/j.ajhg.2008.03.017
- Park SS, Jang SS, Ahn CH, Kim JH, Jung HS, Cho YM, et al. Identifying pathogenic variants of monogenic diabetes using targeted panel sequencing in an east Asian population. J Clin Endocrinol Metab 2019;jc.2018-02397.
- Hattersley AT, Patel KA. Precision diabetes: learning from monogenic diabetes. Diabetologia 2017;60:769-77. https://doi.org/10.1007/s00125-017-4226-2
- Bansal V, Gassenhuber J, Phillips T, Oliveira G, Harbaugh R, Villarasa N, et al. Spectrum of mutations in monogenic diabetes genes identified from high-throughput DNA sequencing of 6888 individuals. BMC Med 2017;15:213. https://doi.org/10.1186/s12916-017-0977-3
- Xu JY, Dan QH, Chan V, Wat NM, Tam S, Tiu SC, et al. Genetic and clinical characteristics of maturity-onset diabetes of the young in Chinese patients. Eur J Hum Genet 2005;13:422-7. https://doi.org/10.1038/sj.ejhg.5201347
- Iwasaki N, Oda N, Ogata M, Hara M, Hinokio Y, Oda Y, et al. Mutations in the hepatocyte nuclear factor-1alpha/MODY3 gene in Japanese subjects with early- and late-onset NIDDM. Diabetes 1997;46:1504-8. https://doi.org/10.2337/diab.46.9.1504
- Nishigori H, Yamada S, Kohama T, Utsugi T, Shimizu H, Takeuchi T, et al. Mutations in the hepatocyte nuclear factor-1 alpha gene (MODY3) are not a major cause of early-onset non-insulin-dependent (type 2) diabetes mellitus in Japanese. J Hum Genet 1998;43:107-10. https://doi.org/10.1007/s100380050049
- Tonooka N, Tomura H, Takahashi Y, Onigata K, Kikuchi N, Horikawa Y, et al. High frequency of mutations in the HNF-1alpha gene in non-obese patients with diabetes of youth in Japanese and identification of a case of digenic inheritance. Diabetologia 2002;45:1709-12. https://doi.org/10.1007/s00125-002-0978-3
- Tanaka D, Nagashima K, Sasaki M, Funakoshi S, Kondo Y, Yasuda K, et al. Exome sequencing identifies a new candidate mutation for susceptibility to diabetes in a family with highly aggregated type 2 diabetes. Mol Genet Metab 2013;109:112-7. https://doi.org/10.1016/j.ymgme.2013.02.010
- Shim YJ, Kim JE, Hwang SK, Choi BS, Choi BH, Cho EM, et al. Identification of candidate gene variants in Korean MODY families by whole-exome sequencing. Horm Res Paediatr 2015;83:242-51. https://doi.org/10.1159/000368657
- Johansson S, Irgens H, Chudasama KK, Molnes J, Aerts J, Roque FS, et al. Exome sequencing and genetic testing for MODY. PLoS One 2012;7:e38050. https://doi.org/10.1371/journal.pone.0038050
Cited by
- Functional Genomics in Pancreatic β Cells: Recent Advances in Gene Deletion and Genome Editing Technologies for Diabetes Research vol.11, 2020, https://doi.org/10.3389/fendo.2020.576632
- Update on Monogenic Diabetes in Korea vol.44, pp.5, 2020, https://doi.org/10.4093/dmj.2020.0214
- Modeling Maturity Onset Diabetes of the Young in Pluripotent Stem Cells: Challenges and Achievements vol.12, 2021, https://doi.org/10.3389/fendo.2021.622940
- Monogenic Childhood Diabetes: Dissecting Clinical Heterogeneity by Next-Generation Sequencing in Maturity-Onset Diabetes of the Young vol.25, pp.7, 2020, https://doi.org/10.1089/omi.2021.0081
- A Comprehensive Analysis of Hungarian MODY Patients-Part I: Gene Panel Sequencing Reveals Pathogenic Mutations in HNF1A, HNF1B, HNF4A, ABCC8 and INS Genes vol.11, pp.8, 2020, https://doi.org/10.3390/life11080755
- A Comprehensive Analysis of Hungarian MODY Patients-Part II: Glucokinase MODY Is the Most Prevalent Subtype Responsible for about 70% of Confirmed Cases vol.11, pp.8, 2021, https://doi.org/10.3390/life11080771
- Diagnosis and Treatment of MODY: An Updated Mini Review vol.11, pp.20, 2021, https://doi.org/10.3390/app11209436
- ABCC8 variants in MODY12: Review of the literature and report of a case with severe complications vol.37, pp.8, 2020, https://doi.org/10.1002/dmrr.3459