DOI QR코드

DOI QR Code

Identification of microRNAs and their target genes in the placenta as biomarkers of inflammation

  • Jang, Hee Yeon (Department of Biomedical Science, CHA University) ;
  • Lim, Seung Mook (Department of Biomedical Science, CHA University) ;
  • Lee, Hyun Jung (Non-Clinical Evaluation Center, CHA Advanced Research Institute) ;
  • Hong, Joon-Seok (Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital) ;
  • Kim, Gi Jin (Department of Biomedical Science, CHA University)
  • 투고 : 2019.05.01
  • 심사 : 2019.09.18
  • 발행 : 2020.03.31

초록

Objective: Recently, microRNA (miRNA) has been identified both as a powerful regulator involved in various biological processes through the regulation of numerous genes and as an effective biomarker for the prediction and diagnosis of various disease states. The objective of this study was to identify and validate miRNAs and their target genes involved in inflammation in placental tissue. Methods: Microarrays were utilized to obtain miRNA and gene expression profiles from placentas with or without inflammation obtained from nine normal pregnant women and 10 preterm labor patients. Quantitative real-time polymerase chain reaction and Western blots were performed to validate the miRNAs and differentially-expressed genes in the placentas with inflammation. Correlations between miRNA and target gene expression were confirmed by luciferase assays in HTR-8/SVneo cells. Results: We identified and validated miRNAs and their target genes that were differentially expressed in placentas with inflammation. We also demonstrated that several miRNAs (miR-371a-5p, miR-3065-3p, miR-519b-3p, and miR-373-3p) directly targeted their target genes (LEF1, LOX, ITGB4, and CD44). However, some miRNAs and their direct target genes showed no correlation in tissue samples. Interestingly, miR-373-3p and miR-3065-3p were markedly regulated by lipopolysaccharide (LPS) treatment, although the expression of their direct targets CD44 and LOX was not altered by LPS treatment. Conclusion: These results provide candidate miRNAs and their target genes that could be used as placental biomarkers of inflammation. These candidates may be useful for further miRNA-based biomarker development.

키워드

참고문헌

  1. Heng YJ, Liong S, Permezel M, Rice GE, Di Quinzio MK, Georgiou HM. Human cervicovaginal fluid biomarkers to predict term and preterm labor. Front Physiol 2015;6:151. https://doi.org/10.3389/fphys.2015.00151
  2. Vogel JP, Souza JP, Gulmezoglu AM, Mori R, Lumbiganon P, Qureshi Z, et al. Use of antenatal corticosteroids and tocolytic drugs in preterm births in 29 countries: an analysis of the WHO Multicountry Survey on Maternal and Newborn Health. Lancet 2014;384:1869-77. https://doi.org/10.1016/S0140-6736(14)60580-8
  3. Romero R, Espinoza J, Kusanovic JP, Gotsch F, Hassan S, Erez O, et al. The preterm parturition syndrome. BJOG 2006;113 Suppl 3:17-42.
  4. Romero R, Espinoza J, Goncalves LF, Kusanovic JP, Friel LA, Nien JK. Inflammation in preterm and term labour and delivery. Semin Fetal Neonatal Med 2006;11:317-26. https://doi.org/10.1016/j.siny.2006.05.001
  5. Lohsoonthorn V, Qiu C, Williams MA. Maternal serum C-reactive protein concentrations in early pregnancy and subsequent risk of preterm delivery. Clin Biochem 2007;40:330-5. https://doi.org/10.1016/j.clinbiochem.2006.11.017
  6. Hastie CE, Smith GC, Mackay DF, Pell JP. Association between preterm delivery and subsequent C-reactive protein: a retrospective cohort study. Am J Obstet Gynecol 2011;205:556.
  7. Goldenberg RL, Mercer BM, Iams JD, Moawad AH, Meis PJ, Das A, et al. The preterm prediction study: patterns of cervicovaginal fetal fibronectin as predictors of spontaneous preterm delivery. National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. Am J Obstet Gynecol 1997;177:8-12. https://doi.org/10.1016/S0002-9378(97)70430-7
  8. Romero R, Chaemsaithong P, Chaiyasit N, Docheva N, Dong Z, Kim CJ, et al. CXCL10 and IL-6: markers of two different forms of intra-amniotic inflammation in preterm labor. Am J Reprod Immunol 2017;78:e12685. https://doi.org/10.1111/aji.12685
  9. Perron MP, Provost P. Protein interactions and complexes in human microRNA biogenesis and function. Front Biosci 2008;13:2537-47. https://doi.org/10.2741/2865
  10. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-97. https://doi.org/10.1016/S0092-8674(04)00045-5
  11. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science 2007;318:1931-4. https://doi.org/10.1126/science.1149460
  12. Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci U S A 2008;105:1608-13. https://doi.org/10.1073/pnas.0707594105
  13. Wang W, Feng L, Zhang H, Hachy S, Satohisa S, Laurent LC, et al. Preeclampsia up-regulates angiogenesis-associated microRNA (i.e., miR-17, -20a, and -20b) that target ephrin-B2 and EPHB4 in human placenta. J Clin Endocrinol Metab 2012;97:E1051-9. https://doi.org/10.1210/jc.2011-3131
  14. Wang Y, Zhang Y, Wang H, Wang J, Zhang Y, Wang Y, et al. Aberrantly up-regulated miR-20a in pre-eclampsic placenta compromised the proliferative and invasive behaviors of trophoblast cells by targeting forkhead box protein A1. Int J Biol Sci 2014;10:973-82. https://doi.org/10.7150/ijbs.9088
  15. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem 2010;56:1733-41. https://doi.org/10.1373/clinchem.2010.147405
  16. Tang Y, Ji H, Liu H, Gu W, Li X, Peng T. Identification and functional analysis of microRNA in myometrium tissue from spontaneous preterm labor. Int J Clin Exp Pathol 2015;8:12811-9.
  17. Mayor-Lynn K, Toloubeydokhti T, Cruz AC, Chegini N. Expression profile of microRNAs and mRNAs in human placentas from pregnancies complicated by preeclampsia and preterm labor. Reprod Sci 2011;18:46-56. https://doi.org/10.1177/1933719110374115
  18. Montenegro D, Romero R, Kim SS, Tarca AL, Draghici S, Kusanovic JP, et al. Expression patterns of microRNAs in the chorioamniotic membranes: a role for microRNAs in human pregnancy and parturition. J Pathol 2009;217:113-21. https://doi.org/10.1002/path.2463
  19. Muhle RA, Pavlidis P, Grundy WN, Hirsch E. A high-throughput study of gene expression in preterm labor with a subtractive microarray approach. Am J Obstet Gynecol 2001;185:716-24. https://doi.org/10.1067/mob.2001.117183
  20. Enquobahrie DA, Hensley M, Qiu C, Abetew DF, Hevner K, Tadesse MG, et al. Candidate gene and microRNA expression in fetal membranes and preterm delivery risk. Reprod Sci 2016;23:731-7. https://doi.org/10.1177/1933719115612925
  21. Chen Y, Zhao H, Tan Z, Zhang C, Fu X. Bottleneck limitations for microRNA-based therapeutics from bench to the bedside. Pharmazie 2015;70:147-54.
  22. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature 2008;455:64-71. https://doi.org/10.1038/nature07242
  23. Riffo-Campos AL, Riquelme I, Brebi-Mieville P. Tools for sequence-based miRNA target prediction: what to choose? Int J Mol Sci 2016;17:E1987. https://doi.org/10.3390/ijms17121987
  24. Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA. org resource: targets and expression. Nucleic Acids Res 2008;36:D149-53. https://doi.org/10.1093/nar/gkm995
  25. Li L, Tu J, Jiang Y, Zhou J, Yabe S, Schust DJ. Effects of lipopolysaccharide on human first trimester villous cytotrophoblast cell function in vitro. Biol Reprod 2016;94:33.
  26. Schatz F, Kayisli UA, Vatandaslar E, Ocak N, Guller S, Abrahams VM, et al. Toll-like receptor 4 expression in decidual cells and interstitial trophoblasts across human pregnancy. Am J Reprod Immunol 2012;68:146-53. https://doi.org/10.1111/j.1600-0897.2012.01148.x
  27. Reya T, O'Riordan M, Okamura R, Devaney E, Willert K, Nusse R, et al. Wnt signaling regulates B lymphocyte proliferation through a LEF-1 dependent mechanism. Immunity 2000;13:15-24. https://doi.org/10.1016/S1074-7613(00)00004-2
  28. Okamura RM, Sigvardsson M, Galceran J, Verbeek S, Clevers H, Grosschedl R. Redundant regulation of T cell differentiation and TCRalpha gene expression by the transcription factors LEF-1 and TCF-1. Immunity 1998;8:11-20. https://doi.org/10.1016/S1074-7613(00)80454-9
  29. Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Genet 2012;13:358-69. https://doi.org/10.1038/nrg3198
  30. Koshiol J, Wang E, Zhao Y, Marincola F, Landi MT. Strengths and limitations of laboratory procedures for microRNA detection. Cancer Epidemiol Biomarkers Prev 2010;19:907-11. https://doi.org/10.1158/1055-9965.EPI-10-0071
  31. Sitras V, Fenton C, Paulssen R, Vartun A, Acharya G. Differences in gene expression between first and third trimester human placenta: a microarray study. PLoS One 2012;7:e33294. https://doi.org/10.1371/journal.pone.0033294
  32. Gu Y, Sun J, Groome LJ, Wang Y. Differential miRNA expression profiles between the first and third trimester human placentas. Am J Physiol Endocrinol Metab 2013;304:E836-43. https://doi.org/10.1152/ajpendo.00660.2012
  33. Stephen GL, Lui S, Hamilton SA, Tower CL, Harris LK, Stevens A, et al. Transcriptomic profiling of human choriodecidua during term labor: inflammation as a key driver of labor. Am J Reprod Immunol 2015;73:36-55. https://doi.org/10.1111/aji.12328
  34. Gulyaeva LF, Kushlinskiy NE. Regulatory mechanisms of microRNA expression. J Transl Med 2016;14:143. https://doi.org/10.1186/s12967-016-0893-x
  35. Hennessy EJ, Sheedy FJ, Santamaria D, Barbacid M, O'Neill LA. Toll-like receptor-4 (TLR4) down-regulates microRNA-107, increasing macrophage adhesion via cyclin-dependent kinase 6. J Biol Chem 2011;286:25531-9. https://doi.org/10.1074/jbc.M111.256206
  36. Qiu YY, Zhang YW, Qian XF, Bian T. miR-371, miR-138, miR-544, miR-145, and miR-214 could modulate Th1/Th2 balance in asthma through the combinatorial regulation of Runx3. Am J Transl Res 2017;9:3184-99.
  37. Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S, et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 2008;10:202-10. https://doi.org/10.1038/ncb1681
  38. Yang K, Handorean AM, Iczkowski KA. MicroRNAs 373 and 520c are downregulated in prostate cancer, suppress CD44 translation and enhance invasion of prostate cancer cells in vitro. Int J Clin Exp Pathol 2009;2:361-9.
  39. Newton K, Dixit VM. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol 2012;4:a006049. https://doi.org/10.1101/cshperspect.a006049
  40. Kumazaki K, Nakayama M, Yanagihara I, Suehara N, Wada Y. Immunohistochemical distribution of Toll-like receptor 4 in term and preterm human placentas from normal and complicated pregnancy including chorioamnionitis. Hum Pathol 2004;35:47-54. https://doi.org/10.1016/j.humpath.2003.08.027
  41. Li L, Kang J, Lei W. Role of Toll-like receptor 4 in inflammation-induced preterm delivery. Mol Hum Reprod 2010;16:267-72. https://doi.org/10.1093/molehr/gap106
  42. Chen SZ, Xu X, Ning LF, Jiang WY, Xing C, Tang QQ, et al. miR-27 impairs the adipogenic lineage commitment via targeting lysyl oxidase. Obesity (Silver Spring) 2015;23:2445-53. https://doi.org/10.1002/oby.21319
  43. Yu Y, Shi E, Gu T, Tang R, Gao S, Wang Y, et al. Overexpression of microRNA-30a contributes to the development of aortic dissection by targeting lysyl oxidase. J Thorac Cardiovasc Surg 2017;154:1862-9. https://doi.org/10.1016/j.jtcvs.2017.06.019
  44. Voloshenyuk TG, Hart AD, Khoutorova E, Gardner JD. $TNF-{\alpha}$ increases cardiac fibroblast lysyl oxidase expression through $TGF-{\beta}$ and PI3Kinase signaling pathways. Biochem Biophys Res Commun 2011;413:370-5. https://doi.org/10.1016/j.bbrc.2011.08.109
  45. Wang Q, Teder P, Judd NP, Noble PW, Doerschuk CM. CD44 deficiency leads to enhanced neutrophil migration and lung injury in Escherichia coli pneumonia in mice. Am J Pathol 2002;161:2219-28. https://doi.org/10.1016/S0002-9440(10)64498-7
  46. Cairns AP, Crockard AD, McConnell JR, Courtney PA, Bell AL. Reduced expression of CD44 on monocytes and neutrophils in systemic lupus erythematosus: relations with apoptotic neutrophils and disease activity. Ann Rheum Dis 2001;60:950-5. https://doi.org/10.1136/ard.60.10.950
  47. Kopriva F, Szotkowska J, Ordeltova M, Zapalka M. Percentage of eosinophils with surface CD44 and levels of eosinophil cationic protein in the peripheral blood in children with bronchial asthma and their changes after montelukast therapy. Allergy Asthma Proc 2006;27:378-82.
  48. Runnels HA, Weber GL, Min J, Kudlacz EM, Zobel JF, Donovan CB, et al. PF-03475952: a potent and neutralizing fully human anti-CD44 antibody for therapeutic applications in inflammatory diseases. Adv Ther 2010;27:168-80. https://doi.org/10.1007/s12325-010-0010-0
  49. Jordan AR, Racine RR, Hennig MJ, Lokeshwar VB. The role of CD44 in disease pathophysiology and targeted treatment. Front Immunol 2015;6:182. https://doi.org/10.3389/fimmu.2015.00182
  50. Wei F, Cao C, Xu X, Wang J. Diverse functions of miR-373 in cancer. J Transl Med 2015;13:162. https://doi.org/10.1186/s12967-015-0523-z
  51. Fan X, Xu S, Yang C. miR-373-3p promotes lung adenocarcinoma cell proliferation via APP. Oncol Lett 2018;15:1046-50.
  52. Weng J, Zhang H, Wang C, Liang J, Chen G, Li W, et al. miR-373-3p targets DKK1 to promote EMT-induced metastasis via the $Wnt/{\beta}$-catenin pathway in tongue squamous cell carcinoma. Biomed Res Int 2017;2017:6010926.
  53. Whitehead CL, Teh WT, Walker SP, Leung C, Larmour L, Tong S. Circulating microRNAs in maternal blood as potential biomarkers for fetal hypoxia in-utero. PLoS One 2013;8:e78487. https://doi.org/10.1371/journal.pone.0078487

피인용 문헌

  1. Down-regulation of long noncoding RNA LINC00472 alleviates sepsis-induced acute hepatic injury by regulating miR-373-3p/TRIM8 axis vol.117, 2020, https://doi.org/10.1016/j.yexmp.2020.104562
  2. High-Throughput Sequencing of Circulating MicroRNAs in Plasma and Serum during Pregnancy Progression vol.11, pp.10, 2020, https://doi.org/10.3390/life11101055