References
- J.L. Wang, S.T. Zhuang, Y. Liu, Metal hexacyanoferrates-based adsorbents for cesium removal, Coord. Chem. Rev. 374 (2018) 430-438. https://doi.org/10.1016/j.ccr.2018.07.014
- J.L. Wang, S.T. Zhuang, Removal of cesium ions from aqueous solutions using various separation technologies, Rev. Environ. Sci. Biotechnol. 18 (2019) 231-269.
- Y.-H. Koo, Y.-S. Yang, K.-W. Song, Radioactivity release from the Fukushima accident and its consequences: a review, Prog. Nucl. Energy 74 (2014) 61-70. https://doi.org/10.1016/j.pnucene.2014.02.013
-
B.C. Russell, I.W. Croudace, P.E. Warwick, Determination of
$^{135}Cs$ and$^{137}Cs$ in environmental samples: a review, Anal. Chim. Acta 890 (2015) 7-20. https://doi.org/10.1016/j.aca.2015.06.037 - J. Beyea, E. Lyman, F.N. von Hippel, Accounting for long-term doses in "worldwide health effects of the Fukushima Daiichi nuclear accident", Energy Environ. Sci. 6 (2013) 1042-1045. https://doi.org/10.1039/c2ee24183h
- J.E. Ten Hoeve, M.Z. Jacobson, Worldwide health effects of the Fukushima Daiichi nuclear accident, Energy Environ. Sci. 5 (2012) 8743-8757. https://doi.org/10.1039/c2ee22019a
- T.P. Valsala, M.S. Sonavane, S.G. Kore, N.L. Sonar, V. De, Y. Raghavendra, S. Chattopadyaya, U. Dani, Y. Kulkarni, R.D. Changrani, Treatment of low level radioactive liquid waste containing appreciable concentration of TBP degraded products, J. Hazard Mater. 196 (2011) 22-28. https://doi.org/10.1016/j.jhazmat.2011.08.065
- K. Kosaka, M. Asami, N. Kobashigawa, K. Ohkubo, H. Terada, N. Kishida, M. Akiba, Removal of radioactive iodine and cesium in water purification processes after an explosion at a nuclear power plant due to the Great East Japan Earthquake, Water Res. 46 (2012) 4397-4404. https://doi.org/10.1016/j.watres.2012.05.055
- A. Zhang, W. Zhang, Y. Wang, X. Ding, Effective separation of cesium with a new silica-calix[4]biscrown material by extraction chromatography, Separ. Purif. Technol. 171 (2016) 17-25. https://doi.org/10.1016/j.seppur.2016.07.011
- X.J. Liu, J.L. Wu, J.L. Wang, Removal of Cs(I) from simulated radioactive wastewater by three forward osmosis membranes, Chem. Eng. J. 344 (2018) 353-362. https://doi.org/10.1016/j.cej.2018.03.046
- F. Jia, J.L. Wang, Separation of cesium ions from aqueous solution by vacuum membrane distillation process, Prog. Nucl. Energy 98 (2017) 293-300. https://doi.org/10.1016/j.pnucene.2017.04.008
- F. Jia, J.F. Li, J.L. Wang, Y.L. Sun, Removal of cesium from simulated radioactive wastewater using a novel disc tubular reverse osmosis system, Nucl. Technol. 197 (2017) 219-224. https://doi.org/10.13182/NT16-6
- H.Y. Liu, J.L. Wang, Treatment of radioactive wastewater using direct contact membrane distillation, J. Hazard Mater. 261 (2013) 307-315. https://doi.org/10.1016/j.jhazmat.2013.07.045
- Y.M. Hu, X. Guo, C. Chen, J.L. Wang, Algal sorbent derived from Sargassum horneri for adsorption of cesium and strontium ions: equilibrium, kinetics, and mass transfer, Appl. Microbiol. Biotechnol. 103 (2019) 2833-2843. https://doi.org/10.1007/s00253-019-09619-z
- J.L. Wang, S.Z. Wang, Preparation, modification and environmental application of biochar: a review, J. Clean. Prod. 227 (2019) 1002-1022.
-
Y.N. Yin, J. Hu, J.L. Wang, Removal of
$Sr^{2+},\;Co^{2+},\;and\;Cs^+$ from aqueous solution by immobilized saccharomyces cerevisiae with magnetic chitosan beads, Environ. Prog. Sustain. Energy 36 (2017) 989-996. https://doi.org/10.1002/ep.12531 - J.L. Wang, S.T. Zhuang, Removal of various pollutants from water and wastewater by modified chitosan adsorbents, Crit. Rev. Environ. Sci. Technol. 47 (2017) 2331-2386.
- L.J. Xu, J.L. Wang, The application of graphene-based materials for the removal of heavy metals and radionuclides from water and wastewater, Crit. Rev. Environ. Sci. Technol. 47 (2017) 1042-1105.
- Y.W. Chen, J.L. Wang, Removal of cesium from radioactive wastewater using magnetic chitosan beads cross-linked with glutaraldehyde, Nucl. Sci. Tech. 27 (2016) 1-6.
- J.L. Wang, C. Chen, Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides, Bioresour. Technol. 160 (2014) 129-141. https://doi.org/10.1016/j.biortech.2013.12.110
- J.L. Wang, C. Chen, Biosorbents for heavy metals removal and their future, Biotechnol. Adv. 27 (2009) 195-226. https://doi.org/10.1016/j.biotechadv.2008.11.002
- J.L. Wang, C. Chen, Biosorption of heavy metals by Saccharomyces cerevisiae: a review, Biotechnol. Adv. 24 (2006) 427-451. https://doi.org/10.1016/j.biotechadv.2006.03.001
- D. Cui, J. Low, K. Spahiu, Environmental behaviors of spent nuclear fuel and canister materials, Energy Environ. Sci. 4 (2011) 2537-2545. https://doi.org/10.1039/c0ee00582g
- R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A 32 (1976) 751-767.
- D. Alby, C. Charnay, M. Heran, B. Prelot, J. Zajac, Recent developments in nanostructured inorganic materials for sorption of cesium and strontium: synthesis and shaping, sorption capacity, mechanisms, and selectivity-A review, J. Hazard Mater. 344 (2018) 511-530. https://doi.org/10.1016/j.jhazmat.2017.10.047
-
J.C. Fanning, The solubilities of the alkali-metal salts and the precipitation of
$Cs^+$ from aqueous-solution, Coord. Chem. Rev. 140 (1995) 27-36. https://doi.org/10.1016/0010-8545(94)01123-S - S.T. Zhuang, Y.N. Yin, J.L. Wang, Removal of cobalt ions from aqueous solution using chitosan grafted with maleic acid by gamma radiation, Nucl. Eng. Technol. 50 (2018) 211-215. https://doi.org/10.1016/j.net.2017.11.007
- R.J. Ellis, B. Reinhart, N.J. Williams, B.A. Moyer, V.S. Bryantsev, Capping the calix: how toluene completes cesium(I) coordination with calix[4]pyrrole, Chem. Commun. 53 (2017) 5610-5613. https://doi.org/10.1039/C7CC02347B
- C.J. Pedersen, Cyclic polyethers and their complexes with metal salts, J. Am. Chem. Soc. 89 (1967) 7017-7036. https://doi.org/10.1021/ja01002a035
- P.V. Bonnesen, L.H. Delmau, B.A. Moyer, G.J. Lumetta, Development of effective solvent modifiers for the solvent extraction of cesium from alkaline high-level tank waste, Solvent Extr. Ion Exch. 21 (2003) 141-170. https://doi.org/10.1081/SEI-120018944
- J.F. Dozol, M. Dozol, R.M. Macias, Extraction of strontium and cesium by dicarbollides, crown ethers and functionalized calixarenes, J. Inclusion Phenom. Macrocycl. Chem. 38 (2000) 1-22.
-
W.W. Schulz, L.A. Bray, Solvent extraction recovery of byproduct
$^{137}Cs$ and$^{90}Sr$ from$HNO_3$ solutions-a technology review and assessment, Separ. Sci. Technol. 22 (1987) 191-214. https://doi.org/10.1080/01496398708068948 - B.J. Mincher, G. Modolo, S.P. Mezyk, Review article: the effects of radiation chemistry on solvent extraction: 2. A review of fission-product extraction, Solvent Extr. Ion Exch. 27 (2009) 331-353. https://doi.org/10.1080/07366290902821263
- N.A. Bezhin, I.I. Dovhyi, Sorbents based on crown ethers: preparation and application for the sorption of strontium, Russ. Chem. Rev. 84 (2015) 1279-1293. https://doi.org/10.1070/RCR4505
- M.R. Awual, T. Yaita, T. Taguchi, H. Shiwaku, S. Suzuki, Y. Okamoto, Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent, J. Hazard Mater. 278 (2014) 227-235. https://doi.org/10.1016/j.jhazmat.2014.06.011
- I.V. Kolesnichenko, E.V. Anslyn, Practical applications of supramolecular chemistry, Chem. Soc. Rev. 46 (2017) 2385-2390.
- T.A. Hanna, L. Liu, A.M. Angeles-Boza, X. Kou, C.D. Gutsche, K. Ejsmont, W.H. Watson, L.N. Zakharov, C.D. Incarvito, A.L. Rheingold, Synthesis, structures, and conformational characteristics of calixarene monoanions and dianions, J. Am. Chem. Soc. 125 (2003) 6228-6238. https://doi.org/10.1021/ja0289797
- T.G. Levitskaia, L. Maya, G.J. Van Berkel, B.A. Moyer, Anion partitioning and ion-pairing behavior of anions in the extraction of cesium salts by 4,5' '-Bis(tert-octylbenzo)dibenzo-24-crown-8 in 1,2-dichloroethane, Inorg. Chem. 46 (2007) 261-272. https://doi.org/10.1021/ic061605k
- C. Xu, J.C. Wang, J. Chen, Solvent extraction of strontium and cesium: a review of recent progress, Solvent Extr. Ion Exch. 30 (2012) 623-650. https://doi.org/10.1080/07366299.2012.700579
- P. Jagasia, P.K. Mohapatra, P.S. Dhami, P.M. Gandhi, P.K. Wattal, Evaluation of novel solvent systems containing calix-crown-6 ligands in a fluorinated solvent for cesium extraction from nitric acidic feeds, Separ. Sci. Technol. 49 (2014) 2151-2157. https://doi.org/10.1080/01496395.2014.921203
- P. Jagasia, P.S. Dhami, P.K. Mohapatra, S.A. Ansari, S.Y. Jadhav, G.K. Kalyankar, P.M. Gandhi, U.K. Kharul, Recovery of radio-cesium from actual high level liquid waste using solvents containing calix[4]arene-crown-6 ligands, J. Environ. Chem. Eng. 5 (2017) 4134-4140. https://doi.org/10.1016/j.jece.2017.07.055
- D.R. Raut, P.K. Mohapatra, S.A. Ansari, A. Sarkar, V.K. Manchanda, Selective transport of radio-cesium by supported liquid membranes containing calix[4] crown-6 ligands as the mobile carrier, Desalination 232 (2008) 262-271. https://doi.org/10.1016/j.desal.2007.10.039
- T.A. Todd, T.A. Batcheller, J.D. Law, R.S. Herbst, Cesium and Strontium Separation Technologies Literature Review, Idaho Falls, Idaho, 2004.
- S.K. Kim, J.L. Sessler, Calix[4]pyrrole-based ion pair receptors, Acc. Chem. Res. 47 (2014) 2525-2536. https://doi.org/10.1021/ar500157a
- S.K. Kim, H.G. Lee, G.I. Vargas-Zuniga, V.M. Lynch, C. Kim, J.L. Sessler, Naphthocrown-strapped calix[4]pyrroles: formation of self-assembled structures by ion-pair recognition, Chemistry 20 (2014) 11750-11759.
- J. Yoo, M.S. Kim, S.J. Hong, J.L. Sessler, C.H. Lee, Selective sensing of anions with calix[4]pyrroles strapped with chromogenic dipyrrolylquinoxalines, J. Org. Chem. 74 (2009) 1065-1069. https://doi.org/10.1021/jo802059c
- Q. He, G.M. Peters, V.M. Lynch, J.L. Sessler, Recognition and extraction of cesium hydroxide and carbonate by using a neutral multitopic ion-pair receptor, Angew. Chem., Int. Ed. Engl. 56 (2017) 13396-13400.
- C. Liu, D.X. Zhang, L.T. Zhao, P. Zhang, X. Lu, S.N. He, Extraction property of ptert-butylsulfonylcalix 4 arene possessing irradiation stability towards cesium(I) and strontium(II), Appl. Sci. 6 (2016) 212-219. https://doi.org/10.3390/app6080212
- P.K. Mohapatra, S.A. Ansari, A. Sarkar, A. Bhattacharyya, V.K. Manchanda, Evaluation of calix-crown ionophores for selective separation of radio-cesium from acidic nuclear waste solution, Anal. Chim. Acta 571 (2006) 308-314. https://doi.org/10.1016/j.aca.2006.05.006
- Y. Dai, R. Lv, Z. Liu, Q. Tao, Z. Zhang, Y. Liu, Extraction behavior of cesium from nitric acid medium with calix[4]-bis[(4-tert-butyl-1,2-phenylene)-crown-6], J. Radioanal. Nucl. Chem. 318 (2018) 2079.
- M. Simonnet, Y. Miyazaki, S. Suzuki, T. Yaita, Quantitative analysis of Cs extraction by some dialkoxycalix[4]arene-crown-6 extractants, Solvent Extr. Ion Exch. 37 (2019) 81-95. https://doi.org/10.1080/07366299.2019.1575002
- X. Chi, G.M. Peters, C. Brockman, V.M. Lynch, J.L. Sessler, Controlling structure beyond the initial coordination sphere: complexation-induced reversed micelle formation in calix[4]pyrrole-containing diblock copolymers, J. Am. Chem. Soc. 140 (2018) 13219-13222. https://doi.org/10.1021/jacs.8b09620
- W.J. McDowell, G.N. Case, J.A. McDonough, R.A. Bartsch, Selective extraction of cesium from acidic nitrate solutions with didodecylnaphthalenesulfonic acid synergized with bis(tert-butylbenzo)-21-crown-7, Anal. Chem. 64 (2002) 3013-3017. https://doi.org/10.1021/ac00047a024
- M.L. Dietz, E. Philip Horwitz, M.P. Jensen, S. Rhoads, R.A. Bartsch, A. Palka, J. Krzykawski, J. Nam, Substituent effects in the extraction of cesium from acidic nitrate media with macrocyclic polyethers, Solvent Extr. Ion Exch. 14 (2007) 357-384. https://doi.org/10.1080/07366299608918345
- A. Zhang, Q. Hu, Removal of cesium by countercurrent solvent extraction with a calix[4]crown derivative, Separ. Sci. Technol. 52 (2017) 1670-1679.
- A. Casnati, A. Pochini, R. Ungaro, F. Ugozzoli, F. Arnaud, S. Fanni, M.-J. Schwing, R.J.M. Egberink, F. de Jong, D.N. Reinhoudt, Synthesis, complexation, and membrane transport studies of 1,3-alternate calix[4]arene-crown-6 conformers: a new class of cesium selective ionophores, J. Am. Chem. Soc. 117 (1995) 2767-2777. https://doi.org/10.1021/ja00115a012
- R. Yi, New Magnetic Composites for Adsorption toward Stronitum and Cesium: Synthesis and Adsorption Behavior Study, Tsinghua University, 2016, p. 128.
- M. Kvicalova, E. Makrlík, S. Bohm, P. Vanura, Z. Asfari, Protonation of calix[4] arene-(2,3-naphthylene-crown-6,crown-6): experimental and theoretical study, J. Mol. Struct. 1134 (2017) 722-727. https://doi.org/10.1016/j.molstruc.2016.12.013
- T. Takahashi, T. Ito, S.Y. Kim, Selective extraction of Cs(I) using 1,3-[(2,4- diethylheptylethoxy)oxy]-2,4-crown-6-calix[4]arene in ionic liquid solvents and its application to the treatment of high-level liquid waste, J. Radioanal. Nucl. Chem. 316 (2018) 1067-1073. https://doi.org/10.1007/s10967-018-5876-3
- J.L. Sessle, S.K. Kim, D.E. Gross, C.-H. Lee, J.S. Kim, V.M. Lynch, Crown-6-calix[4] arene-capped calix[4]pyrrole: an ion-pair receptor for solvent-separated CsF ions, J. Am. Chem. Soc. 130 (2008) 13162-13166. https://doi.org/10.1021/ja804976f
- S.K. Kim, J.L. Sessler, D.E. Gross, C.H. Lee, J.S. Kim, V.M. Lynch, L.H. Delmau, B.P. Hay, A calix[4]arene strapped calix[4]pyrrole: an ion-pair receptor displaying three different cesium cation recognition modes, J. Am. Chem. Soc. 132 (2010) 5827-5836. https://doi.org/10.1021/ja100715e
-
T. Ito, Y. Xu, S.-Y. Kim, R. Nagaishi, T. Kimura, Adsorption behavior and radiation effects of a silica-based (Calix(4)+Dodecanol)/
$SiO_2$ -P adsorbent for selective separation of Cs(I) from high level liquid waste, Separ. Sci. Technol. 51 (2015) 22-31. - M.A. Olatunji, M.U. Khandaker, H.N.M.E. Mahmud, Y.M. Amin, Influence of adsorption parameters on cesium uptake from aqueous solutions- a brief review, RSC Adv. 5 (2015) 71658-71683. https://doi.org/10.1039/C5RA10598F
- M.T. Albelda, J.C. Frias, E. Garcia-Espana, H.J. Schneider, Supramolecular complexation for environmental control, Chem. Soc. Rev. 41 (2012) 3859-3877. https://doi.org/10.1039/c2cs35008d
- A. Ovsyannikov, S. Solovieva, I. Antipin, S. Ferlay, Coordination polymers based on calixarene derivatives: structures and properties, Coord. Chem. Rev. 352 (2017) 151-186. https://doi.org/10.1016/j.ccr.2017.09.004
- P.K. Parhi, Supported liquid membrane principle and its practices: a short review, J. Chem. 2013 (2013) 1-11.
- N. Kumar, I. Leray, A. Depauw, Chemically derived optical sensors for the detection of cesium ions, Coord. Chem. Rev. 310 (2016) 1-15. https://doi.org/10.1016/j.ccr.2015.11.008
- M.R. Awual, T. Yaita, Y. Miyazaki, D. Matsumura, H. Shiwaku, T. Taguchi, A reliable hybrid adsorbent for efficient radioactive cesium accumulation from contaminated wastewater, Sci. Rep. 6 (2016) 19937. https://doi.org/10.1038/srep19937
- R. Yi, G. Ye, F. Wu, D. Lv, J. Chen, Magnetic solid-phase extraction of strontium using coreeshell structured magnetic microspheres impregnated with crown ether receptors: a response surface optimization, J. Radioanal. Nucl. Chem. 308 (2015) 599-608.
- H.-R. Yu, J.-Q. Hu, Z. Liu, X.-J. Ju, R. Xie, W. Wang, L.-Y. Chu, Ion-recognizable hydrogels for efficient removal of cesium ions from aqueous environment, J. Hazard Mater. 323 (2017) 632-640. https://doi.org/10.1016/j.jhazmat.2016.10.024
-
Z. Liu, Y. Zhou, M. Guo, B. Lv, Z. Wu, W. Zhou, Experimental and theoretical investigations of
$Cs^+$ adsorption on crown ethers modified magnetic adsorbent, J. Hazard Mater. 371 (2019) 712-720. https://doi.org/10.1016/j.jhazmat.2019.03.022 - A. Zhang, C. Chen, Y. Ji, S. Liu, S. Guo, Uptake of cesium and some typical metals onto hybrid calix[4]crown adsorbent with silica carrier by hosteguest recognition, J. Chem. Eng. Data 63 (2018) 1578-1587. https://doi.org/10.1021/acs.jced.7b01092
- A. Leoncini, J. Huskens, W. Verboom, Ligands for f-element extraction used in the nuclear fuel cycle, Chem. Soc. Rev. 46 (2017) 7229-7273. https://doi.org/10.1039/c7cs00574a
- P. Jagasia, S.A. Ansari, D.R. Raut, P.S. Dhami, P.M. Gandhi, A. Kumar, P.K. Mohapatra, Hollow fiber supported liquid membrane studies using a process compatible solvent containing calix[4]arene-mono-crown-6 for the recovery of radio-cesium from nuclear waste, Separ. Purif. Technol. 170 (2016) 208-216. https://doi.org/10.1016/j.seppur.2016.06.036
- A. Jo, G. Jang, H. Namgung, C. Kim, D. Kim, Y. Kim, J. Kim, T.S. Lee, Simultaneous detection and removal of radioisotopes with modified alginate beads containing an azo-based probe using RGB coordinates, J. Hazard Mater. 300 (2015) 227-234. https://doi.org/10.1016/j.jhazmat.2015.06.051
-
J.Y. Kim, H.J. Kim, N.H. Heo, K. Seff, Progress toward zeolite-based self-luminous sensors for radioactive isotopes such as
$^{201}Tl$ and$^{137}Cs$ : structures and luminescence of Hf, Cl, Tl-A and Hf, Cl, Cs, Na-A, J. Phys. Chem. C 121 (2017) 19619-19633. https://doi.org/10.1021/acs.jpcc.7b05641 - N. Ding, M.G. Kanatzidis, Selective incarceration of caesium ions by Venus flytrap action of a flexible framework sulfide, Nat. Chem. 2 (2010) 187-191. https://doi.org/10.1038/nchem.519
-
S. Naeimi, H. Faghihian, Performance of novel adsorbent prepared by magnetic metal-organic framework (MOF) modified by potassium nickel hexacyanoferrate for removal of
$Cs^+$ from aqueous solution, Separ. Purif. Technol. 175 (2017) 255-265. https://doi.org/10.1016/j.seppur.2016.11.028 - Y. Wang, Z. Liu, Y. Li, Z. Bai, W. Liu, Y. Wang, X. Xu, C. Xiao, D. Sheng, D. Juan, J. Su, Z. Chai, T.E. Albrecht-Schmitt, S. Wang, Umbellate distortions of the uranyl coordination environment result in a stable and porous polycatenated framework that can effectively remove cesium from aqueous solutions, J. Am. Chem. Soc. 137 (2015) 6144-6147. https://doi.org/10.1021/jacs.5b02480
- J. Li, X. Wang, G. Zhao, C. Chen, Z. Chai, A. Alsaedi, T. Hayat, X. Wang, Metalorganic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions, Chem. Soc. Rev. 47 (2018) 2322-2356.
- C. Xiao, M.A. Silver, S. Wang, Metal-organic frameworks for radionuclide sequestration from aqueous solution: a brief overview and outlook, Dalton Trans. 46 (2017) 16381-16386. https://doi.org/10.1039/c7dt03670a
- Z. Zhang, A. Drapailo, Y. Matvieiev, L. Wojtas, M.J. Zaworotko, A calixarene based metal organic material, calixMOM, that binds potassium cations, Chem. Commun. 49 (2013) 8353-8355. https://doi.org/10.1039/c3cc44687e
Cited by
- Removal of cesium ions using nickel hexacyanoferrates-loaded bacterial cellulose membrane as an effective adsorbent vol.294, 2020, https://doi.org/10.1016/j.molliq.2019.111682
- Uranium biosorption by immobilized active yeast cells entrapped in calcium-alginate-PVA- GO-crosslinked gel beads vol.108, pp.4, 2020, https://doi.org/10.1515/ract-2019-3150
- Macrocyclic Pyridone Pentamers for Highly Selective High‐Capacity Removal of Caesium Ions from Radioactive High‐Salinity Waste vol.15, pp.24, 2020, https://doi.org/10.1002/asia.202001098
- Crown Ethers: Selective Sorbents of Radioactive and Heavy Metals vol.15, pp.1, 2021, https://doi.org/10.1134/s1990793121010036
- Efficient Removal of Cs+ and Sr2+ Ions by Granulous (Me2NH2)4/3(Me3NH)2/3Sn3S7·1.25H vol.13, pp.11, 2020, https://doi.org/10.1021/acsami.1c01983
- Development of the Functionalized Nanocomposite Materials for Adsorption/Decontamination of Radioactive Pollutants vol.14, pp.11, 2020, https://doi.org/10.3390/ma14112896
- Selective removal of cesium by ammonium molybdophosphate-magnetic Fe3O4-chitosan composites vol.36, pp.14, 2020, https://doi.org/10.1557/s43578-021-00279-2
- Adsorptive removal of Sr(II) from aqueous solution by polyvinyl alcohol/graphene oxide aerogel vol.278, 2020, https://doi.org/10.1016/j.chemosphere.2021.130492
- Selective Separation of Radiocesium from Complex Aqueous Matrices Using Dual Solid-Phase Extraction Systems vol.1654, 2020, https://doi.org/10.1016/j.chroma.2021.462476
- Lithiated Calix[n]arenes (n = 6 or 8): Synthesis, Structures, and Use in the Ring-Opening Polymerization of Cyclic Esters vol.60, pp.20, 2020, https://doi.org/10.1021/acs.inorgchem.1c02192
- Treatment of zeolite adsorbed material as a potential nuclear waste glass‐ceramic matrix vol.105, pp.1, 2020, https://doi.org/10.1111/jace.18094
- Non-thermal plasma irradiated polyaluminum chloride for the heterogeneous adsorption enhancement of Cs+ and Sr2+ in a binary system vol.424, pp.no.pb, 2022, https://doi.org/10.1016/j.jhazmat.2021.127441
- Direct synthetic routes to functionalised crown ethers vol.8, pp.19, 2021, https://doi.org/10.1039/d1qo00699a