DOI QR코드

DOI QR Code

Cesium separation from radioactive waste by extraction and adsorption based on crown ethers and calixarenes

  • Wang, Jianlong (Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University) ;
  • Zhuang, Shuting (Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University)
  • Received : 2019.03.02
  • Accepted : 2019.08.04
  • Published : 2020.02.25

Abstract

Cesium is a major product of uranium fission, which is the most commonly existed radionuclide in radioactive wastes. Various technologies have been applied to separate radioactive cesium from radioactive wastes, such as chemical precipitation, solvent extraction, membrane separation and adsorption. Crown ethers and calixarenes derivatives can selectively coordinate with cesium ions by ion-dipole interaction or cation-π interaction, which are promising extractants for cesium ions due to their promising coordinating structure. This review systematically summarized and analyzed the recent advances in the crown ethers and calixarenes derivatives for cesium separation, especially focusing on the adsorbents based on extractants for cesium removal from aqueous solution, such as the grafting coordinating groups (e.g. crown ether and calixarenes) and coordinating polymers (e.g. MOFs) due to their unique coordination ability and selectivity for cesium ions. These adsorbents combined the advantages of extraction and adsorption methods and showed high adsorption capacity for cesium ions, which are promising for cesium separation The key restraints for cesium separation, as well as the newest progress of the adsorbents for cesium separation were also discussed. Finally, some concluding remarks and suggestions for future researches were proposed.

Keywords

References

  1. J.L. Wang, S.T. Zhuang, Y. Liu, Metal hexacyanoferrates-based adsorbents for cesium removal, Coord. Chem. Rev. 374 (2018) 430-438. https://doi.org/10.1016/j.ccr.2018.07.014
  2. J.L. Wang, S.T. Zhuang, Removal of cesium ions from aqueous solutions using various separation technologies, Rev. Environ. Sci. Biotechnol. 18 (2019) 231-269.
  3. Y.-H. Koo, Y.-S. Yang, K.-W. Song, Radioactivity release from the Fukushima accident and its consequences: a review, Prog. Nucl. Energy 74 (2014) 61-70. https://doi.org/10.1016/j.pnucene.2014.02.013
  4. B.C. Russell, I.W. Croudace, P.E. Warwick, Determination of $^{135}Cs$ and $^{137}Cs$ in environmental samples: a review, Anal. Chim. Acta 890 (2015) 7-20. https://doi.org/10.1016/j.aca.2015.06.037
  5. J. Beyea, E. Lyman, F.N. von Hippel, Accounting for long-term doses in "worldwide health effects of the Fukushima Daiichi nuclear accident", Energy Environ. Sci. 6 (2013) 1042-1045. https://doi.org/10.1039/c2ee24183h
  6. J.E. Ten Hoeve, M.Z. Jacobson, Worldwide health effects of the Fukushima Daiichi nuclear accident, Energy Environ. Sci. 5 (2012) 8743-8757. https://doi.org/10.1039/c2ee22019a
  7. T.P. Valsala, M.S. Sonavane, S.G. Kore, N.L. Sonar, V. De, Y. Raghavendra, S. Chattopadyaya, U. Dani, Y. Kulkarni, R.D. Changrani, Treatment of low level radioactive liquid waste containing appreciable concentration of TBP degraded products, J. Hazard Mater. 196 (2011) 22-28. https://doi.org/10.1016/j.jhazmat.2011.08.065
  8. K. Kosaka, M. Asami, N. Kobashigawa, K. Ohkubo, H. Terada, N. Kishida, M. Akiba, Removal of radioactive iodine and cesium in water purification processes after an explosion at a nuclear power plant due to the Great East Japan Earthquake, Water Res. 46 (2012) 4397-4404. https://doi.org/10.1016/j.watres.2012.05.055
  9. A. Zhang, W. Zhang, Y. Wang, X. Ding, Effective separation of cesium with a new silica-calix[4]biscrown material by extraction chromatography, Separ. Purif. Technol. 171 (2016) 17-25. https://doi.org/10.1016/j.seppur.2016.07.011
  10. X.J. Liu, J.L. Wu, J.L. Wang, Removal of Cs(I) from simulated radioactive wastewater by three forward osmosis membranes, Chem. Eng. J. 344 (2018) 353-362. https://doi.org/10.1016/j.cej.2018.03.046
  11. F. Jia, J.L. Wang, Separation of cesium ions from aqueous solution by vacuum membrane distillation process, Prog. Nucl. Energy 98 (2017) 293-300. https://doi.org/10.1016/j.pnucene.2017.04.008
  12. F. Jia, J.F. Li, J.L. Wang, Y.L. Sun, Removal of cesium from simulated radioactive wastewater using a novel disc tubular reverse osmosis system, Nucl. Technol. 197 (2017) 219-224. https://doi.org/10.13182/NT16-6
  13. H.Y. Liu, J.L. Wang, Treatment of radioactive wastewater using direct contact membrane distillation, J. Hazard Mater. 261 (2013) 307-315. https://doi.org/10.1016/j.jhazmat.2013.07.045
  14. Y.M. Hu, X. Guo, C. Chen, J.L. Wang, Algal sorbent derived from Sargassum horneri for adsorption of cesium and strontium ions: equilibrium, kinetics, and mass transfer, Appl. Microbiol. Biotechnol. 103 (2019) 2833-2843. https://doi.org/10.1007/s00253-019-09619-z
  15. J.L. Wang, S.Z. Wang, Preparation, modification and environmental application of biochar: a review, J. Clean. Prod. 227 (2019) 1002-1022.
  16. Y.N. Yin, J. Hu, J.L. Wang, Removal of $Sr^{2+},\;Co^{2+},\;and\;Cs^+$ from aqueous solution by immobilized saccharomyces cerevisiae with magnetic chitosan beads, Environ. Prog. Sustain. Energy 36 (2017) 989-996. https://doi.org/10.1002/ep.12531
  17. J.L. Wang, S.T. Zhuang, Removal of various pollutants from water and wastewater by modified chitosan adsorbents, Crit. Rev. Environ. Sci. Technol. 47 (2017) 2331-2386.
  18. L.J. Xu, J.L. Wang, The application of graphene-based materials for the removal of heavy metals and radionuclides from water and wastewater, Crit. Rev. Environ. Sci. Technol. 47 (2017) 1042-1105.
  19. Y.W. Chen, J.L. Wang, Removal of cesium from radioactive wastewater using magnetic chitosan beads cross-linked with glutaraldehyde, Nucl. Sci. Tech. 27 (2016) 1-6.
  20. J.L. Wang, C. Chen, Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides, Bioresour. Technol. 160 (2014) 129-141. https://doi.org/10.1016/j.biortech.2013.12.110
  21. J.L. Wang, C. Chen, Biosorbents for heavy metals removal and their future, Biotechnol. Adv. 27 (2009) 195-226. https://doi.org/10.1016/j.biotechadv.2008.11.002
  22. J.L. Wang, C. Chen, Biosorption of heavy metals by Saccharomyces cerevisiae: a review, Biotechnol. Adv. 24 (2006) 427-451. https://doi.org/10.1016/j.biotechadv.2006.03.001
  23. D. Cui, J. Low, K. Spahiu, Environmental behaviors of spent nuclear fuel and canister materials, Energy Environ. Sci. 4 (2011) 2537-2545. https://doi.org/10.1039/c0ee00582g
  24. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A 32 (1976) 751-767.
  25. D. Alby, C. Charnay, M. Heran, B. Prelot, J. Zajac, Recent developments in nanostructured inorganic materials for sorption of cesium and strontium: synthesis and shaping, sorption capacity, mechanisms, and selectivity-A review, J. Hazard Mater. 344 (2018) 511-530. https://doi.org/10.1016/j.jhazmat.2017.10.047
  26. J.C. Fanning, The solubilities of the alkali-metal salts and the precipitation of $Cs^+$ from aqueous-solution, Coord. Chem. Rev. 140 (1995) 27-36. https://doi.org/10.1016/0010-8545(94)01123-S
  27. S.T. Zhuang, Y.N. Yin, J.L. Wang, Removal of cobalt ions from aqueous solution using chitosan grafted with maleic acid by gamma radiation, Nucl. Eng. Technol. 50 (2018) 211-215. https://doi.org/10.1016/j.net.2017.11.007
  28. R.J. Ellis, B. Reinhart, N.J. Williams, B.A. Moyer, V.S. Bryantsev, Capping the calix: how toluene completes cesium(I) coordination with calix[4]pyrrole, Chem. Commun. 53 (2017) 5610-5613. https://doi.org/10.1039/C7CC02347B
  29. C.J. Pedersen, Cyclic polyethers and their complexes with metal salts, J. Am. Chem. Soc. 89 (1967) 7017-7036. https://doi.org/10.1021/ja01002a035
  30. P.V. Bonnesen, L.H. Delmau, B.A. Moyer, G.J. Lumetta, Development of effective solvent modifiers for the solvent extraction of cesium from alkaline high-level tank waste, Solvent Extr. Ion Exch. 21 (2003) 141-170. https://doi.org/10.1081/SEI-120018944
  31. J.F. Dozol, M. Dozol, R.M. Macias, Extraction of strontium and cesium by dicarbollides, crown ethers and functionalized calixarenes, J. Inclusion Phenom. Macrocycl. Chem. 38 (2000) 1-22.
  32. W.W. Schulz, L.A. Bray, Solvent extraction recovery of byproduct $^{137}Cs$ and $^{90}Sr$ from $HNO_3$ solutions-a technology review and assessment, Separ. Sci. Technol. 22 (1987) 191-214. https://doi.org/10.1080/01496398708068948
  33. B.J. Mincher, G. Modolo, S.P. Mezyk, Review article: the effects of radiation chemistry on solvent extraction: 2. A review of fission-product extraction, Solvent Extr. Ion Exch. 27 (2009) 331-353. https://doi.org/10.1080/07366290902821263
  34. N.A. Bezhin, I.I. Dovhyi, Sorbents based on crown ethers: preparation and application for the sorption of strontium, Russ. Chem. Rev. 84 (2015) 1279-1293. https://doi.org/10.1070/RCR4505
  35. M.R. Awual, T. Yaita, T. Taguchi, H. Shiwaku, S. Suzuki, Y. Okamoto, Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent, J. Hazard Mater. 278 (2014) 227-235. https://doi.org/10.1016/j.jhazmat.2014.06.011
  36. I.V. Kolesnichenko, E.V. Anslyn, Practical applications of supramolecular chemistry, Chem. Soc. Rev. 46 (2017) 2385-2390.
  37. T.A. Hanna, L. Liu, A.M. Angeles-Boza, X. Kou, C.D. Gutsche, K. Ejsmont, W.H. Watson, L.N. Zakharov, C.D. Incarvito, A.L. Rheingold, Synthesis, structures, and conformational characteristics of calixarene monoanions and dianions, J. Am. Chem. Soc. 125 (2003) 6228-6238. https://doi.org/10.1021/ja0289797
  38. T.G. Levitskaia, L. Maya, G.J. Van Berkel, B.A. Moyer, Anion partitioning and ion-pairing behavior of anions in the extraction of cesium salts by 4,5' '-Bis(tert-octylbenzo)dibenzo-24-crown-8 in 1,2-dichloroethane, Inorg. Chem. 46 (2007) 261-272. https://doi.org/10.1021/ic061605k
  39. C. Xu, J.C. Wang, J. Chen, Solvent extraction of strontium and cesium: a review of recent progress, Solvent Extr. Ion Exch. 30 (2012) 623-650. https://doi.org/10.1080/07366299.2012.700579
  40. P. Jagasia, P.K. Mohapatra, P.S. Dhami, P.M. Gandhi, P.K. Wattal, Evaluation of novel solvent systems containing calix-crown-6 ligands in a fluorinated solvent for cesium extraction from nitric acidic feeds, Separ. Sci. Technol. 49 (2014) 2151-2157. https://doi.org/10.1080/01496395.2014.921203
  41. P. Jagasia, P.S. Dhami, P.K. Mohapatra, S.A. Ansari, S.Y. Jadhav, G.K. Kalyankar, P.M. Gandhi, U.K. Kharul, Recovery of radio-cesium from actual high level liquid waste using solvents containing calix[4]arene-crown-6 ligands, J. Environ. Chem. Eng. 5 (2017) 4134-4140. https://doi.org/10.1016/j.jece.2017.07.055
  42. D.R. Raut, P.K. Mohapatra, S.A. Ansari, A. Sarkar, V.K. Manchanda, Selective transport of radio-cesium by supported liquid membranes containing calix[4] crown-6 ligands as the mobile carrier, Desalination 232 (2008) 262-271. https://doi.org/10.1016/j.desal.2007.10.039
  43. T.A. Todd, T.A. Batcheller, J.D. Law, R.S. Herbst, Cesium and Strontium Separation Technologies Literature Review, Idaho Falls, Idaho, 2004.
  44. S.K. Kim, J.L. Sessler, Calix[4]pyrrole-based ion pair receptors, Acc. Chem. Res. 47 (2014) 2525-2536. https://doi.org/10.1021/ar500157a
  45. S.K. Kim, H.G. Lee, G.I. Vargas-Zuniga, V.M. Lynch, C. Kim, J.L. Sessler, Naphthocrown-strapped calix[4]pyrroles: formation of self-assembled structures by ion-pair recognition, Chemistry 20 (2014) 11750-11759.
  46. J. Yoo, M.S. Kim, S.J. Hong, J.L. Sessler, C.H. Lee, Selective sensing of anions with calix[4]pyrroles strapped with chromogenic dipyrrolylquinoxalines, J. Org. Chem. 74 (2009) 1065-1069. https://doi.org/10.1021/jo802059c
  47. Q. He, G.M. Peters, V.M. Lynch, J.L. Sessler, Recognition and extraction of cesium hydroxide and carbonate by using a neutral multitopic ion-pair receptor, Angew. Chem., Int. Ed. Engl. 56 (2017) 13396-13400.
  48. C. Liu, D.X. Zhang, L.T. Zhao, P. Zhang, X. Lu, S.N. He, Extraction property of ptert-butylsulfonylcalix 4 arene possessing irradiation stability towards cesium(I) and strontium(II), Appl. Sci. 6 (2016) 212-219. https://doi.org/10.3390/app6080212
  49. P.K. Mohapatra, S.A. Ansari, A. Sarkar, A. Bhattacharyya, V.K. Manchanda, Evaluation of calix-crown ionophores for selective separation of radio-cesium from acidic nuclear waste solution, Anal. Chim. Acta 571 (2006) 308-314. https://doi.org/10.1016/j.aca.2006.05.006
  50. Y. Dai, R. Lv, Z. Liu, Q. Tao, Z. Zhang, Y. Liu, Extraction behavior of cesium from nitric acid medium with calix[4]-bis[(4-tert-butyl-1,2-phenylene)-crown-6], J. Radioanal. Nucl. Chem. 318 (2018) 2079.
  51. M. Simonnet, Y. Miyazaki, S. Suzuki, T. Yaita, Quantitative analysis of Cs extraction by some dialkoxycalix[4]arene-crown-6 extractants, Solvent Extr. Ion Exch. 37 (2019) 81-95. https://doi.org/10.1080/07366299.2019.1575002
  52. X. Chi, G.M. Peters, C. Brockman, V.M. Lynch, J.L. Sessler, Controlling structure beyond the initial coordination sphere: complexation-induced reversed micelle formation in calix[4]pyrrole-containing diblock copolymers, J. Am. Chem. Soc. 140 (2018) 13219-13222. https://doi.org/10.1021/jacs.8b09620
  53. W.J. McDowell, G.N. Case, J.A. McDonough, R.A. Bartsch, Selective extraction of cesium from acidic nitrate solutions with didodecylnaphthalenesulfonic acid synergized with bis(tert-butylbenzo)-21-crown-7, Anal. Chem. 64 (2002) 3013-3017. https://doi.org/10.1021/ac00047a024
  54. M.L. Dietz, E. Philip Horwitz, M.P. Jensen, S. Rhoads, R.A. Bartsch, A. Palka, J. Krzykawski, J. Nam, Substituent effects in the extraction of cesium from acidic nitrate media with macrocyclic polyethers, Solvent Extr. Ion Exch. 14 (2007) 357-384. https://doi.org/10.1080/07366299608918345
  55. A. Zhang, Q. Hu, Removal of cesium by countercurrent solvent extraction with a calix[4]crown derivative, Separ. Sci. Technol. 52 (2017) 1670-1679.
  56. A. Casnati, A. Pochini, R. Ungaro, F. Ugozzoli, F. Arnaud, S. Fanni, M.-J. Schwing, R.J.M. Egberink, F. de Jong, D.N. Reinhoudt, Synthesis, complexation, and membrane transport studies of 1,3-alternate calix[4]arene-crown-6 conformers: a new class of cesium selective ionophores, J. Am. Chem. Soc. 117 (1995) 2767-2777. https://doi.org/10.1021/ja00115a012
  57. R. Yi, New Magnetic Composites for Adsorption toward Stronitum and Cesium: Synthesis and Adsorption Behavior Study, Tsinghua University, 2016, p. 128.
  58. M. Kvicalova, E. Makrlík, S. Bohm, P. Vanura, Z. Asfari, Protonation of calix[4] arene-(2,3-naphthylene-crown-6,crown-6): experimental and theoretical study, J. Mol. Struct. 1134 (2017) 722-727. https://doi.org/10.1016/j.molstruc.2016.12.013
  59. T. Takahashi, T. Ito, S.Y. Kim, Selective extraction of Cs(I) using 1,3-[(2,4- diethylheptylethoxy)oxy]-2,4-crown-6-calix[4]arene in ionic liquid solvents and its application to the treatment of high-level liquid waste, J. Radioanal. Nucl. Chem. 316 (2018) 1067-1073. https://doi.org/10.1007/s10967-018-5876-3
  60. J.L. Sessle, S.K. Kim, D.E. Gross, C.-H. Lee, J.S. Kim, V.M. Lynch, Crown-6-calix[4] arene-capped calix[4]pyrrole: an ion-pair receptor for solvent-separated CsF ions, J. Am. Chem. Soc. 130 (2008) 13162-13166. https://doi.org/10.1021/ja804976f
  61. S.K. Kim, J.L. Sessler, D.E. Gross, C.H. Lee, J.S. Kim, V.M. Lynch, L.H. Delmau, B.P. Hay, A calix[4]arene strapped calix[4]pyrrole: an ion-pair receptor displaying three different cesium cation recognition modes, J. Am. Chem. Soc. 132 (2010) 5827-5836. https://doi.org/10.1021/ja100715e
  62. T. Ito, Y. Xu, S.-Y. Kim, R. Nagaishi, T. Kimura, Adsorption behavior and radiation effects of a silica-based (Calix(4)+Dodecanol)/$SiO_2$-P adsorbent for selective separation of Cs(I) from high level liquid waste, Separ. Sci. Technol. 51 (2015) 22-31.
  63. M.A. Olatunji, M.U. Khandaker, H.N.M.E. Mahmud, Y.M. Amin, Influence of adsorption parameters on cesium uptake from aqueous solutions- a brief review, RSC Adv. 5 (2015) 71658-71683. https://doi.org/10.1039/C5RA10598F
  64. M.T. Albelda, J.C. Frias, E. Garcia-Espana, H.J. Schneider, Supramolecular complexation for environmental control, Chem. Soc. Rev. 41 (2012) 3859-3877. https://doi.org/10.1039/c2cs35008d
  65. A. Ovsyannikov, S. Solovieva, I. Antipin, S. Ferlay, Coordination polymers based on calixarene derivatives: structures and properties, Coord. Chem. Rev. 352 (2017) 151-186. https://doi.org/10.1016/j.ccr.2017.09.004
  66. P.K. Parhi, Supported liquid membrane principle and its practices: a short review, J. Chem. 2013 (2013) 1-11.
  67. N. Kumar, I. Leray, A. Depauw, Chemically derived optical sensors for the detection of cesium ions, Coord. Chem. Rev. 310 (2016) 1-15. https://doi.org/10.1016/j.ccr.2015.11.008
  68. M.R. Awual, T. Yaita, Y. Miyazaki, D. Matsumura, H. Shiwaku, T. Taguchi, A reliable hybrid adsorbent for efficient radioactive cesium accumulation from contaminated wastewater, Sci. Rep. 6 (2016) 19937. https://doi.org/10.1038/srep19937
  69. R. Yi, G. Ye, F. Wu, D. Lv, J. Chen, Magnetic solid-phase extraction of strontium using coreeshell structured magnetic microspheres impregnated with crown ether receptors: a response surface optimization, J. Radioanal. Nucl. Chem. 308 (2015) 599-608.
  70. H.-R. Yu, J.-Q. Hu, Z. Liu, X.-J. Ju, R. Xie, W. Wang, L.-Y. Chu, Ion-recognizable hydrogels for efficient removal of cesium ions from aqueous environment, J. Hazard Mater. 323 (2017) 632-640. https://doi.org/10.1016/j.jhazmat.2016.10.024
  71. Z. Liu, Y. Zhou, M. Guo, B. Lv, Z. Wu, W. Zhou, Experimental and theoretical investigations of $Cs^+$ adsorption on crown ethers modified magnetic adsorbent, J. Hazard Mater. 371 (2019) 712-720. https://doi.org/10.1016/j.jhazmat.2019.03.022
  72. A. Zhang, C. Chen, Y. Ji, S. Liu, S. Guo, Uptake of cesium and some typical metals onto hybrid calix[4]crown adsorbent with silica carrier by hosteguest recognition, J. Chem. Eng. Data 63 (2018) 1578-1587. https://doi.org/10.1021/acs.jced.7b01092
  73. A. Leoncini, J. Huskens, W. Verboom, Ligands for f-element extraction used in the nuclear fuel cycle, Chem. Soc. Rev. 46 (2017) 7229-7273. https://doi.org/10.1039/c7cs00574a
  74. P. Jagasia, S.A. Ansari, D.R. Raut, P.S. Dhami, P.M. Gandhi, A. Kumar, P.K. Mohapatra, Hollow fiber supported liquid membrane studies using a process compatible solvent containing calix[4]arene-mono-crown-6 for the recovery of radio-cesium from nuclear waste, Separ. Purif. Technol. 170 (2016) 208-216. https://doi.org/10.1016/j.seppur.2016.06.036
  75. A. Jo, G. Jang, H. Namgung, C. Kim, D. Kim, Y. Kim, J. Kim, T.S. Lee, Simultaneous detection and removal of radioisotopes with modified alginate beads containing an azo-based probe using RGB coordinates, J. Hazard Mater. 300 (2015) 227-234. https://doi.org/10.1016/j.jhazmat.2015.06.051
  76. J.Y. Kim, H.J. Kim, N.H. Heo, K. Seff, Progress toward zeolite-based self-luminous sensors for radioactive isotopes such as $^{201}Tl$ and $^{137}Cs$: structures and luminescence of Hf, Cl, Tl-A and Hf, Cl, Cs, Na-A, J. Phys. Chem. C 121 (2017) 19619-19633. https://doi.org/10.1021/acs.jpcc.7b05641
  77. N. Ding, M.G. Kanatzidis, Selective incarceration of caesium ions by Venus flytrap action of a flexible framework sulfide, Nat. Chem. 2 (2010) 187-191. https://doi.org/10.1038/nchem.519
  78. S. Naeimi, H. Faghihian, Performance of novel adsorbent prepared by magnetic metal-organic framework (MOF) modified by potassium nickel hexacyanoferrate for removal of $Cs^+$ from aqueous solution, Separ. Purif. Technol. 175 (2017) 255-265. https://doi.org/10.1016/j.seppur.2016.11.028
  79. Y. Wang, Z. Liu, Y. Li, Z. Bai, W. Liu, Y. Wang, X. Xu, C. Xiao, D. Sheng, D. Juan, J. Su, Z. Chai, T.E. Albrecht-Schmitt, S. Wang, Umbellate distortions of the uranyl coordination environment result in a stable and porous polycatenated framework that can effectively remove cesium from aqueous solutions, J. Am. Chem. Soc. 137 (2015) 6144-6147. https://doi.org/10.1021/jacs.5b02480
  80. J. Li, X. Wang, G. Zhao, C. Chen, Z. Chai, A. Alsaedi, T. Hayat, X. Wang, Metalorganic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions, Chem. Soc. Rev. 47 (2018) 2322-2356.
  81. C. Xiao, M.A. Silver, S. Wang, Metal-organic frameworks for radionuclide sequestration from aqueous solution: a brief overview and outlook, Dalton Trans. 46 (2017) 16381-16386. https://doi.org/10.1039/c7dt03670a
  82. Z. Zhang, A. Drapailo, Y. Matvieiev, L. Wojtas, M.J. Zaworotko, A calixarene based metal organic material, calixMOM, that binds potassium cations, Chem. Commun. 49 (2013) 8353-8355. https://doi.org/10.1039/c3cc44687e

Cited by

  1. Removal of cesium ions using nickel hexacyanoferrates-loaded bacterial cellulose membrane as an effective adsorbent vol.294, 2020, https://doi.org/10.1016/j.molliq.2019.111682
  2. Uranium biosorption by immobilized active yeast cells entrapped in calcium-alginate-PVA- GO-crosslinked gel beads vol.108, pp.4, 2020, https://doi.org/10.1515/ract-2019-3150
  3. Macrocyclic Pyridone Pentamers for Highly Selective High‐Capacity Removal of Caesium Ions from Radioactive High‐Salinity Waste vol.15, pp.24, 2020, https://doi.org/10.1002/asia.202001098
  4. Crown Ethers: Selective Sorbents of Radioactive and Heavy Metals vol.15, pp.1, 2021, https://doi.org/10.1134/s1990793121010036
  5. Efficient Removal of Cs+ and Sr2+ Ions by Granulous (Me2NH2)4/3(Me3NH)2/3Sn3S7·1.25H vol.13, pp.11, 2020, https://doi.org/10.1021/acsami.1c01983
  6. Development of the Functionalized Nanocomposite Materials for Adsorption/Decontamination of Radioactive Pollutants vol.14, pp.11, 2020, https://doi.org/10.3390/ma14112896
  7. Selective removal of cesium by ammonium molybdophosphate-magnetic Fe3O4-chitosan composites vol.36, pp.14, 2020, https://doi.org/10.1557/s43578-021-00279-2
  8. Adsorptive removal of Sr(II) from aqueous solution by polyvinyl alcohol/graphene oxide aerogel vol.278, 2020, https://doi.org/10.1016/j.chemosphere.2021.130492
  9. Selective Separation of Radiocesium from Complex Aqueous Matrices Using Dual Solid-Phase Extraction Systems vol.1654, 2020, https://doi.org/10.1016/j.chroma.2021.462476
  10. Lithiated Calix[n]arenes (n = 6 or 8): Synthesis, Structures, and Use in the Ring-Opening Polymerization of Cyclic Esters vol.60, pp.20, 2020, https://doi.org/10.1021/acs.inorgchem.1c02192
  11. Treatment of zeolite adsorbed material as a potential nuclear waste glass‐ceramic matrix vol.105, pp.1, 2020, https://doi.org/10.1111/jace.18094
  12. Non-thermal plasma irradiated polyaluminum chloride for the heterogeneous adsorption enhancement of Cs+ and Sr2+ in a binary system vol.424, pp.no.pb, 2022, https://doi.org/10.1016/j.jhazmat.2021.127441
  13. Direct synthetic routes to functionalised crown ethers vol.8, pp.19, 2021, https://doi.org/10.1039/d1qo00699a