DOI QR코드

DOI QR Code

Interaction between UN and CdCl2 in molten LiCl-KCl eutectic. I. Experiment at 773 K

  • Zhitkov, Alexander (Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences) ;
  • Potapov, Alexei (Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences) ;
  • Karimov, Kirill (Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences) ;
  • Shishkin, Vladimir (Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences) ;
  • Dedyukhin, Alexander (Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences) ;
  • Zaykov, Yury (Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences)
  • Received : 2019.03.06
  • Accepted : 2019.07.06
  • Published : 2020.01.25

Abstract

The interaction between UN and CdCl2 in the LiCl-KCl molten eutectic was studied at 773 K. The reaction was controlled by sampling the melt, as well as by analysis of the resulting precipitate. The process was shown to proceed according to several parallel reactions. The summary reaction was determined to have two stages: a fast one and a slow one. The 19-53% UN → UCl3 conversion was obtained for the molar ratio of CdCl2/UN = 1.22-14.9. The rest of UN converts into the precipitate of complex composition (UNCl + U2N3 + U4N7 + UN2). The increase in the CdCl2/UN molar ratio from 1.22 to 14.9 resulted in the decrease in duration of the first "fast" stage of the process from 18 h to 1 h.

Keywords

References

  1. L.M. Zabudko, V.M. Poplavsky, Investigations of nitride fuels for fast reactors in Russia, in: Symp. On Nitride Fuel Cycle Technology. July 28, 2004, JAERI, Tokai, Japan, JAERI-Conf 2004-015, pp.1-14
  2. H. Hayashi, T. Sato, H. Shibata, M. Kurata, T. Iwai, Y. Arai, Pyrochemical treatment of spent nitride fuels for MA transmutation, Sci. China Chem. (2014) 1427-1431. https://doi.org/10.1007/s11426-014-5205-9
  3. YuP. Zaykov, YuS. Mochalov, V.A. Khokhlov, V.Yu Shishkin, A.M. Potapov, V.A. Kovrov, M.N. Gerasimenko, A.S. Zhidkov, S.G. Terent'ev, Pyrochemical recycling of the nitride SNF of fast neutron reactors in molten salts as a part of the short-circuited nuclear fuel cycle, in: Int. Conf. On Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable Development, (FR17), 26-29 June 2017, Yekaterinburg, Russian Federation, Book of Abstracts (CD) IAEA-CN245, Rep.259
  4. V.Yu Shishkin, A.M. Potapov, V. Kovrov, YuP. Zaikov, The peculiarities of pyrochemical reprocessing of spent nuclear fuel, in: Int. Nuclear Fuel Cycle Conf. Nuclear Energy Innovation to the Carbon-free World (GLOBAL 2017), September 24-29, 2017, Seoul (Korea). Proceedings. Paper EA-104-PD3
  5. A. Mullabaev, O. Tkacheva, V. Kovrov, Yu Zaikov, L. Sukhanov, Y. Mochalov, Properties of the LiCl-KCl-$Li_2O$ system as operating medium for pyro-chemical reprocessing of spent nuclear fuel, J. Nucl. Mater. 500 (2018) 235-241. https://doi.org/10.1016/j.jnucmat.2018.01.004
  6. F. Kobayashi, T. Ogawa, M. Akabori, Y. Kato, Anodic dissolution of uranium mononitride in lithium chloride-potassium chloride eutectic mel, J. Am. Ceram. Soc. 78 (8) (1995) 2279-2281. https://doi.org/10.1111/j.1151-2916.1995.tb08657.x
  7. F. Kobayashi, T. Ogawa, Y. Okamoto, M. Akabori, Stability of UNCl in LiCl-KCl eutectic melt, J. Alloy. Comp. 271-273 (1998) 374-377. https://doi.org/10.1016/S0925-8388(98)00092-9
  8. O. Shirai, K. Uozumi, T. Iwai, Y. Arai, reportAnodic Dissolution of UN in LiCl-KCl Eutectic Melts, Nuclear Energy System Department Annual Report, JAERI - Review, 2003-004, pp. 180-182
  9. O. Shirai, K. Uozumi, T. Iwai, Y. Arai, Recovery of U by electrolysis of UN in LiCl-KCl eutectic melts, J. Nucl. Sci. Technol. 39 (Suppl. 3) (2002) 745-748. https://doi.org/10.1080/00223131.2002.10875574
  10. O. Shirai, M. Iizuka, T. Iwai, Y. Suzuki, Y. Arai, Recovery of neptunium by electrolysis of NpN in LiCl-KCl eutectic melts, J. Nucl. Sci. Technol. 37 (8) (2000) 676-681. https://doi.org/10.1080/18811248.2000.9714943
  11. O. Shirai, T. Iwai, K. Shiozawa, Y. Suzuki, Y. Sakamura, T. Inoue, Electrolysis of plutonium nitride in LiCl-KCl eutectic melts, J. Nucl. Mater. 277 (2000) 226-230. https://doi.org/10.1016/S0022-3115(99)00194-4
  12. H. Hayashi, H. Shibata, M. Akabori, Y. Arai, K. Minato, Electrolysis of AmN in LiCl-KCl eutectic melts and renitridation of Am recovered in liquid Cd cathode, Electorchemistry (Denki Kagaku oyobi Kogyobutsurikagaku) 77 (8) (2009) 673-676.
  13. O.A. Ustinov, L.P. Sukhanov, O.N. Pogorelko, V.A. Abramov, A.V. Vorob'ev, Chlorinating behavior of actinides during electrochemical reprocessing of nitride fuel in chloride melts, Atom. Energy (2005) 191-195.
  14. O. Shirai, T. Kato, T. Iwai, Y. Arai, T. Yamashita, Electrochemical behaviors of PuN and (U, Pu)N in LiCl-KCl eutectic melts, J. Phys. Chem. Solids 66 (2-4) (2005) 456-460. https://doi.org/10.1016/j.jpcs.2004.06.040
  15. T. Satoh, T. Iwai, Y. Arai, Electrolysis of burnup-simulated uranium nitride fuels in LiCl-KCl eutectic melts, J. Nucl. Sci. Technol. 46 (6) (2009) 557-563. https://doi.org/10.1080/18811248.2007.9711562
  16. T. Sato, K. Nishihara, M. Takano, Reprocessing of spent nitride fuel by chemical dissolution in molten salt: results on plutonium nitride containing inert matrix materials. Actinide and Fission Product Partitioning and Transmutation, in: Proc. of 12th OECD/NEA Information Exchange Meeting, Prague, Czech Republic, Sept. 24-27, 2012, 2013, pp. 199-208.
  17. F. Kobayashi, T. Ogawa, M. Takano, M. Akabori, A. Itoh, K. Minano, S. Takahashi, Dissolution of metal nitrides in LiCl-KCl eutectic melt, in: Proc. Int. Conf. on Future Nucl. Systems. GLOBAL'99 "Nuclear Technology - Bridging the Millennia" Aug. 29 - Sept.3, 1999, Snow King Resort Jackson Hole, Wyoming. Report 040
  18. H. Hayashi, F. Kobayashi, T. Ogawa, K. Minato, Dissolution of uranium nitrides in LiCl-KCl eutectic melt, J. Nucl. Sci. Technol. 39 (Suppl.3) (2002) 624-627. https://doi.org/10.1080/00223131.2002.10875545
  19. T. Sato, K. Nishihara, M. Takano, Reprocessing of spent nitride fuel by chemical dissolution in molten salt: preliminary results on rare-earth mononitride, in: Proc. of GLOBAL 2011 Paper 364088, (CD-ROM), 2011.
  20. H. Hayashi, T. Satoh, H. Shibata, T. Iwai, K. Nishihara, Y. Arai, Development of the pyrochemical process of spent nitride fuels for ADS; its elemental technologies and process flow diagram, in: Proc. GLOBAL 2011. Makuhari, Japan, Dec. 11-16, 2011. Paper No. 392090
  21. H. Hayashi, T. Satoh, Y. Tsubata, Development of the technology for pyroprocessing of minor actinide nitride fuel, in: Proc. GLOBAL 2017 Sept. 24-29, 2017 - Seoul (Korea) Paper A-413
  22. A.S. Basin, A.B. Kaplun, A.B. Meshalkin, N.F. Uvarov, LiCl-KCl binary system, Zhurn. Neorg. Khim, (Russian J. Inorg. Chem.) 53 (2008) 1611-1613 (in Russian).
  23. W.F. Gale, T.C. Totemeier (Eds.), Smithells Metals Reference Book, eighth ed., 2004, 2072 pp.
  24. A. Nakayoshi, S. Kitawaki, M. Fukushima, T. Murakami, M. Kurata, Investigation of a LiCl-KCl-$UCl_3$ system using a combination of X-ray diffraction and differential thermal analyses, J. Nucl. Mater. 441 (2013) 468-472. https://doi.org/10.1016/j.jnucmat.2013.06.019
  25. K. Nakamura, M. Kurata, Thermal analysis of pseudo-binary system: LiCl - KCl eutectic and lanthanide trichloride, J. Nucl. Mater. 247 (1) (1997) 309-314. https://doi.org/10.1016/S0022-3115(97)00099-8
  26. Y. Zhang, C. Zheng, Y. Ye, Phase diagram of system $NdCl_3$-LiCl-KCl, Series B, Acta Metall. Sin. (1989) 13-17, 2.
  27. A. Salyulev, A. Potapov, V. Shishkin, V. Khokhlov, Electrical conductivity of quasi-binary (LiCl-KCl)eut. - $CdCl_2$ melts, Electrochim. Acta 182 (2015) 821-826. https://doi.org/10.1016/j.electacta.2015.09.152
  28. D.R. Lide (Ed.), CRC Handbook of Chemistry and Physics. A Ready-Reference Book of Chemical and Physical Data, 90th edition, CRC Press, Boca Raton, London, N.Y., 2009, pp. 4-53.
  29. L. Yang, R.G. Hudson, Equilibrium electrode potentials of some metal-chlorine galvanic cells and activities of some metal chlorides in LiCl-KC1 eutectic melt, Trans. Met. Soc. AIME 215 (1959) 589-601.
  30. R.O. Hoover, M.R. Shaltry, S. Martin, K. Sridharan, S. Phongikaroon, Electrochemical studies and analysis of 1 - 10 wt% $UCl_3$ concentrations in molten LiCl-KCl eutectic, J. Nucl. Mater. 452 (1-3) (2014) 389-396. https://doi.org/10.1016/j.jnucmat.2014.05.057
  31. Y. Hu, Z. Long, K. Liu, J. Liu, Uranium nitride $U_2N_3$ as a novel thermoelectric material, Mater. Lett. 178 (2016) 124-127. https://doi.org/10.1016/j.matlet.2016.04.207
  32. R.A. Evarestov, A.I. Panin, A.V. Bandura, M.V. Losev, Electronic structure of crystalline uranium nitrides UN, $U_2N_3$ and $UN_2$: LCAO calculations with the basis set optimization, J. Phys. Conf. Ser. 117 (2008), 012015. https://doi.org/10.1088/1742-6596/117/1/012015

Cited by

  1. Electrochemical recovery of Zr and Cd from molten chloride salts for reprocessing of used nitride fuels vol.558, 2022, https://doi.org/10.1016/j.jnucmat.2021.153330