DOI QR코드

DOI QR Code

Phylogenetic relationships of Iranian Allium species using the matK (cpDNA gene) region

  • Zarei, Hemadollah (Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol) ;
  • Fakheri, Barat Ali (Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol) ;
  • Naghavi, Mohammad Reza (Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran) ;
  • Mahdinezhad, Nafiseh (Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol)
  • 투고 : 2019.12.06
  • 심사 : 2020.01.27
  • 발행 : 2020.03.31

초록

Allium L. is one of the largest genera of the Amaryllidaceae family, with more than 920 species including many economically important species used as vegetables, spices, medicines, or ornamental plants. Currently, DNA barcoding tools are being successfully used for the molecular taxonomy of Allium. A total of 46 Allium species were collected from their native areas, and DNA was extracted using the IBRC DNA extraction kit. We used specific primers to PCR amplify matK. DNA sequences were edited and aligned for homology, and a phylogenetic tree was constructed using the neighbor-joining method. The results show thymine (38.5%) was the most frequent and guanine (13.9%) the least frequent nucleotide. The matK regions of the populations were quite highly conserved, and the amount of C and CT was calculated at 0.162 and 0.26, respectively. Analysis of the nucleotide substitution showed C-T (26.22%) and A-G (8.08%) to have the highest and lowest percent, respectively. The natural selection process dN/dS was 1.16, and the naturality test results were -1.5 for Tajima's D and -1.19 for Fu's Fs. The NJ dendrogram generated three distinct clades: the first contained Allium austroiranicum and A. ampeloprasum; the second contained A. iranshahrii, A. bisotunense, and A. cf assadi; and the third contained A. rubellum and other species. In this study, we tested the utility of the matK region as a DNA barcode for discriminating Allium. species.

키워드

참고문헌

  1. Abdulina SA. (1999) Checklist of vascular plants of Kazakhstan. Institute of Botany and Plant Introduction, Almaty, 1-187
  2. Abugalieva S, Volkova L, Genievskaya Y, Ivaschenko A, Kotukhov Y, Sakauova G, and Turuspekov Y. (2017) Taxonomic assessment of Allium species from Kazakhstan based on ITS and matK markers. BMC plant biology 17, 258 https://doi.org/10.1186/s12870-017-1194-0
  3. Akhani H. (1999) Studies on the flora and vegetation of the Golestan National Park, NE Iran*. III. Three new species, one new subspecies and fifteen new records for Iran. Edinburgh Journal of Botany 56, 1-31 https://doi.org/10.1017/S0960428600002328
  4. Akhavan A, Saeidi H, Rahiminejad MR, Zarre S, and Blattner FR. (2015) Interspecific relationships in Allium subgenus Melanocrommyum sections Acanthoprason and Asteroprason (Amaryllidaceae) revealed using ISSR markers. Systematic botany 40(3), 706-715 https://doi.org/10.1600/036364415X689168
  5. Bandara NL, Papini A, Mosti S, Brown T, and Smith LMJ. (2013) A phylogenetic analysis of genus Onobrychis and its relationships within the tribe Hedysareae (Fabaceae). Turkish Journal of Botany 37(6), 891-992
  6. Brochmann C, Xiang QY, Brunsfeld SJ, Soltis DE, and Soltis PS, (1998) Molecular evidence for polyploid origins in Saxifraga (Saxifragaceae): the narrow arctic endemic S. svalbardensis and its widespread allies. American Journal of Botany 85, 135-143 https://doi.org/10.2307/2446562
  7. Burgess KS, Fazekas AJ, Kesanakurti PR, Graham SW, Husband BC, Newmaster SG, and Barrett SC. (2011). Discriminating plant species in a local temperate flora using the rbcL+ matK DNA barcode. Methods in Ecology and Evolution 2(4), 333-340 https://doi.org/10.1111/j.2041-210X.2011.00092.x
  8. Choi HJ, Giussani LM, Jang CG, Oh BU, and Cota-Sanchez JH. (2012) Systematics of disjunct northeastern Asian and northern north American Allium (Amaryllidaceae). Botany 90(6), 491-508 https://doi.org/10.1139/b2012-031
  9. De Mattia F, Bruni I, Galimberti A, Cattaneo F, Casiraghi M, and Labra M. (2011) A comparative study of different DNA barcoding markers for the identification of some members of Lamiacaea. Food Research International 44(3), 693-702 https://doi.org/10.1016/j.foodres.2010.12.032
  10. Edgar RC. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research 32(5), 1792-1797 https://doi.org/10.1093/nar/gkh340
  11. Friesen N, Fritsch RM, and Blattner FR. (2006) Phylogeny and new intrageneric classification of Allium (Alliaceae) based on nuclear ribosomal DNA ITS sequences. Aliso: A Journal of Systematic and Evolutionary Botany 22, 372-395 https://doi.org/10.5642/aliso.20062201.31
  12. Fritsch RM, and Friesen N. (2002) Evolution, domestication and taxonomy. Allium crop science: recent advances, 5-30
  13. Fritsch RM, Khassanov FO, and Matin F. (2002). New Allium taxa from Middle Asia and Iran. na
  14. Fritsch RM, Salmaki Y, Zarre S, and Joharchi M. (2006) The genus Allium (Alliaceae) in Iran: current state, new taxa and new records. Rostaniha 7(2), 255-281
  15. Fritsch RM, and Abbasi M. (2008) New taxa and other contributions to the taxonomy of Allium L. (Alliaceae) in Iran
  16. Fritsch RM, and Abbasi M. (2013) A taxonomic review of Allium subg. Melanocrommyum in Iran. Leibniz-Institut fur Pflanzengenetik und Kulturpflanzenforschung
  17. Fritsch RM, Blattner FR, and Gurushidze M. (2010) New classification of Allium L. subg. Melanocrommyum (Webb & Berthel.) Rouy (Alliaceae) based on molecular and morphological characters. Phyton (Horn) 49(2), 145-220
  18. Fritsch RM, and Maroofi H. (2010) New species and new records of Allium L. (Alliaceae) from Iran. Phyton (Horn) 50, 1-26
  19. Fritsch RM, Matin F, and Klaas M. (2001) Allium vavilovii M. Popov et Vved. and a new Iranian species are the closest among the known relatives of the common onion A. cepa L. (Alliaceae). Genetic Resources and Crop Evolution 48(4), 401-408 https://doi.org/10.1023/A:1012034931024
  20. Fuse S, and Tamura MN. (2000) A phylogenetic analysis of the plastid matK gene with emphasis on Melanthiaceae sensu lato. Plant Biology 2(4), 415-427 https://doi.org/10.1055/s-2000-5953
  21. Ghanbari S, Fakheri BA, Naghavi MR, and Mahdinezhad N. (2018) Evaluating phylogenetic relationships in the Lilium family using the ITS marker. Journal of Plant Biotechnology 45(3), 236-241 https://doi.org/10.5010/JPB.2018.45.3.236
  22. Govaerts R, Kingto, S, Friesen N, Fritsch RM, Snijman DA, Marcucci R, Silverstone Sopkin PA. and Brullo S. (2005-2014). World checklist of Amaryllidaceae (WWW Document)
  23. Hollingsworth PM, Forrest LL, Spouge JL, Hajibabaei M, Ratnasingham S, and Fazekas AJ. (2009) A DNA barcode for land plants. Proceedings of the National Academy of Sciences 106(31), 12794-12797 https://doi.org/10.1073/pnas.0905845106
  24. Guo J, SU JX, LIN RZ, LI RQ, and XIAO PG. (2011) Testing four proposed barcoding markers for the identification of species within Ligustrum L. (Oleaceae). Journal of Systematics and Evolution 49(3), 213-224 https://doi.org/10.1111/j.1759-6831.2011.00136.x
  25. Guo X, Simmons MP, BUT PPH, SHAW PC, and WANG RJ. (2011) Application of DNA barcodes in Hedyotis L. (Spermacoceae, Rubiaceae). Journal of Systematics and Evolution 49(3), 203-212 https://doi.org/10.1111/j.1759-6831.2011.00130.x
  26. Gurushidze M, Fritsch RM, and Blattner FR. (2010) Species-level phylogeny of Allium subgenus Melanocrommyum: Incomplete lineage sorting, hybridization and trnF gene duplication. Taxon 59(3), 829-840 https://doi.org/10.1002/tax.593012
  27. Gurushidze M, Mashayekhi S, Blattner FR, Friesen N, and Fritsch RM. (2007) Phylogenetic relationships of wild and cultivated species of Allium section Cepa inferred by nuclear rDNA ITS sequence analysis. Plant Systematics and Evolution 269(3-4), 59-269.
  28. Hall TA. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic acids symposium series 41, 95-98
  29. Harpke D, Meng S, Rutten T, Kerndorff H, and Blattner FR. (2013) Phylogeny of Crocus (Iridaceae) based on one chloroplast and two nuclear loci: ancient hybridization and chromosome number evolution. Molecular phylogenetics and evolution 66(3), 617-627 https://doi.org/10.1016/j.ympev.2012.10.007
  30. Hebert PD, Cywinska A, Ball SL, and Dewaard JR. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1512), 313-321 https://doi.org/10.1098/rspb.2002.2218
  31. Hirschegger P, Jakse J, Trontelj P, and Bohanec B. (2010) Origins of Allium ampeloprasum horticultural groups and a molecular phylogeny of the section Allium (Allium: Alliaceae). Molecular Phylogenetics and Evolution 54(2), 488-497 https://doi.org/10.1016/j.ympev.2009.08.030
  32. Huang X, and Madan A. (1999) CAP3: A DNA sequence assembly program. Genome research, 9(9), 868-877 https://doi.org/10.1101/gr.9.9.868
  33. Ipek M, Ipek A, and Simon PW. (2014) Testing the utility of matK and ITS DNA regions for discrimination of Allium species. Turkish journal of botany, 38(2), 203-212 https://doi.org/10.3906/bot-1308-46
  34. Ito M, Kawamoto A, Kita Y, Yukawa T, and Kurita S. (1999) Phylogenetic relationships of Amaryllidaceae based on matK sequence data. Journal of Plant Research 112(2), 207-216 https://doi.org/10.1007/PL00013874
  35. Jing YU, Jian-Hua XUE, and Shi-Liang ZHOU. 2011. New universal matK primers for DNA barcoding angiosperms. Journal of Systematics and Evolution, 49(3), 176-181 https://doi.org/10.1111/j.1759-6831.2011.00134.x
  36. Ince AG, Karaca M, Onus AN, and Bilgen M. (2005) Chloroplast matK gene phylogeny of some important species of plants. Akdeniz Universites Iziraatfakultesi Dergisi 18, 157-162
  37. Kamelin R, and Seisums A. (1996) "Tri novykh vida roda Allium L." Alliaceae) iz yugo-zapadnoi Azii. (Tres species novae generis Allium L. (Alliaceae) ex Asia austro-occidentali.) Novosti Sistematiki Vysshikh Rastenii 30, 29-33
  38. Khassanov FO, and Memariani F. (2006) Allium joharchii, a new species from Khorasan Province (Iran). Rostaniha 7(2), 63-69
  39. Khassanov FO, Noroozi J, and Akhani H. (2006) Two new species of the genus Allium (Alliaceae) from Iran. Rostaniha 7(2), 119-129
  40. Kim YB, Ramekar RV, Choi SJ, Choi BG, Kim SW, Moon YK, and Choi IY. (2018) Molecular identification of Allium ochotense and Allium microdictyon using multiplex-PCR based on single nucleotide polymorphisms. Horticulture, Environment, and Biotechnology 59(6), 865-873 https://doi.org/10.1007/s13580-018-0069-0
  41. Kimura M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of molecular evolution 16(2), 111-120 https://doi.org/10.1007/BF01731581
  42. Koch M, Haubold B, and Mitchell-Olds T. (2001) Molecular systematics of the Brassicaceae: evidence from coding plastidic matK and nuclear Chs sequences. American Journal of Botany 88(3), 534-544 https://doi.org/10.2307/2657117
  43. Kress WJ. (2017) Plant DNA barcodes: Applications today and in the future. Journal of systematics and evolution 55(4), 291-307 https://doi.org/10.1111/jse.12254
  44. Kress WJ, and Erickson DL. (2008) DNA barcodes: genes, genomics, and bioinformatics. Proceedings of the National Academy of Sciences 105(8), 2761-2762 https://doi.org/10.1073/pnas.0800476105
  45. Lahaye R, Van der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G, and Savolainen V. (2008) DNA barcoding the floras of biodiversity hotspots. Proceedings of the National Academy of Sciences 105(8), 2923-2928 https://doi.org/10.1073/pnas.0709936105
  46. Leigh JW, and Bryant D. (2015) popart: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6(9), 1110-1116 https://doi.org/10.1111/2041-210X.12410
  47. Li FW, Kuo LY, Rothfels CJ, Ebihara A, Chiou WL, Windham MD, and Pryer KM. (2011) rbcL and matK earn two thumbs up as the core DNA barcode for ferns. PLoS One 6(10), e26597 https://doi.org/10.1371/journal.pone.0026597
  48. Li QQ, Zhou SD, He XJ, Yu Y, Zhang YC, and Wei XQ. (2010) Phylogeny and biogeography of Allium (Amaryllidaceae: Allieae) based on nuclear ribosomal internal transcribed spacer and chloroplast rps16 sequences, focusing on the inclusion of species endemic to China. Annals of botany 106(5), 709-733 https://doi.org/10.1093/aob/mcq177
  49. Li X, Yang Y, Henry RJ, Rossetto M, Wang Y, and Chen S. (2015) Plant DNA barcoding: from gene to genome. Biological Reviews 90(1), 157-166 https://doi.org/10.1111/brv.12104
  50. Mashayekhi S, Zarre S, Fritsch RM, and Attar F. (2005) A new species of Allium subgen. Melanocrommyum sect. Compactoprason (Alliaceae) from Iran. Feddes Repertorium: Zeitschrift fur botanische Taxonomie und Geobotanik 116(3-4), 191-194 https://doi.org/10.1002/fedr.200411065
  51. Matin F. (1992) The genus Allium in Iran, diversity, distribution and endemism. In The genus Allium-taxonomic problems and genetic resources. Proceedings of an international symposium held at Gatersleben 193-194
  52. Memariani F, Joharchi MR, and Arjmandi AA. (2012) Allium aladaghense (Amaryllidaceae, Allieae), a new species of section Asteroprason from northeast of Iran. Phytotaxa 56(1), 28-34 https://doi.org/10.11646/phytotaxa.56.1.7
  53. Memariani F, Jouharchi M, and Khassanov FO. (2007) Allium L. subgen. Rhizirideum sensu lato in Iran, two new records and a synopsis of taxonomy and phytogeography
  54. Nei M, and Kumar S. (2000) Molecular evolution and phylogenetics. Oxford university press
  55. Neshati F, Zarre S, Fritsch RM, and Joharchi MR. (2009) Allium oriento-iranicum (Alliaceae), a new species from Iran. In Annales Botanici Fennici 46(6), 599-602 https://doi.org/10.5735/085.046.0618
  56. Nguyen NH, Driscoll HE, and Specht CD. (2008) A molecular phylogeny of the wild onions (Allium; Alliaceae) with a focus on the western North American center of diversity. Molecular Phylogenetics and Evolution 47(3), 1157-1172 https://doi.org/10.1016/j.ympev.2007.12.006
  57. Pang X, Song J, Zhu Y, Xu H, Huang L, and Chen S. (2011) Applying plant DNA barcodes for Rosaceae species identification. Cladistics 27(2), 165-170 https://doi.org/10.1111/j.1096-0031.2010.00328.x
  58. Picoult-Newberg L, Ideker TE, Pohl MG, Taylor SL, Donaldson MA, Nickerson DA, and Boyce-Jacino M. (1999) Mining SNPs from EST databases. Genome Research (9), 167-174
  59. Razyfard H, Zarre S, Fritsch RM, and Maroofi H. (2011) Four new species of Allium (Alliaceae) from Iran. In Annales Botanici Fennici 48(4), 352-361 https://doi.org/10.5735/085.048.0407
  60. Seberg O, Petersen G, Davis JI, Pires JC, Stevenson DW, Chase MW, and Pillon Y. (2012) Phylogeny of the Asparagales based on three plastid and two mitochondrial genes. American Journal of Botany 99(5), 875-889 https://doi.org/10.3732/ajb.1100468
  61. Son JH, Park KC, Kim TW, Park YJ, Kang JH, and Kim NS. (2010) Sequence diversification of 45S rRNA ITS, trnH-psbA spacer, and matK genic regions in several Allium species. Genes & Genomics 32(2), 165-172 https://doi.org/10.1007/s13258-009-0849-0
  62. Steele KP, and Vilgalys R. (1994) Phylogenetic analyses of Polemoniaceae using nucleotide sequences of the plastid gene matK. Systematic Botany 126-142
  63. Stoeckle M. (2003) Taxonomy, DNA, and the bar code of life. BioScience 53(9), 796-797 https://doi.org/10.1641/0006-3568(2003)053[0796:TDATBC]2.0.CO;2
  64. Sykorova E, Fajkus J, Meznikova M, Lim KY, Neplechova K, Blattner FR, and Leitch AR. (2006) Minisatellite telomeres occur in the family Alliaceae but are lost in Allium. American journal of botany 93(6), 814-823 https://doi.org/10.3732/ajb.93.6.814
  65. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, and Kumar S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution 28(10), 2731-2739 https://doi.org/10.1093/molbev/msr121
  66. Tamura MN, Yamashita J, Fuse S, and Haraguchi M. (2004) Molecular phylogeny of monocotyledons inferred from combined analysis of plastid matK and rbcL gene sequences. Journal of Plant Research 117(2), 109-120 https://doi.org/10.1007/s10265-003-0133-3
  67. Tripathi AM, Tyagi A, Kumar A, Singh A, Singh S, Chaudhary LB, and Roy S. (2013) The internal transcribed spacer (ITS) region and trnhH-psbA are suitable candidate loci for DNA barcoding of tropical tree species of India. PloS one 8(2), e57934 https://doi.org/10.1371/journal.pone.0057934
  68. Veiskarami GH, Khodayari H, Heubl G, Weigend M, and Zarre S. (2019) Phylogenetic relationships in Allium sect. Allium (Amaryllidaceae, Allioideae) in Iran as inferred from nrDNA ITS, cpDNA rps16 and trnL-F sequences. Nordic Journal of Botany
  69. von Berg GL, Samoylov A, Klaas M, and Hanelt P. (1996) Chloroplast DNA restriction analysis and the infrageneric grouping of Allium (Alliaceae). Plant systematics and evolution, 200(3-4), 253-261 https://doi.org/10.1007/BF00984939
  70. Wendelbo P. (1971) Some distributional patterns within the Flora Iranica area. Plant Life of South West Asia
  71. Zhi-Yuan DU, Qimike A, Chun-Feng Y, Jin-Ming C, and Qing-Feng W. (2011) Testing four barcoding markers for species identification of Potamogetonaceae. Journal of Systematics and Evolution 49(3), 246-251 https://doi.org/10.1111/j.1759-6831.2011.00131.x