Acknowledgement
The authors would like to thank Mustansiriyah university (www.uomustansiriyah.edu.iq) Baghdad-Iraq for its support in the present work.
References
- Aboudi, J. (2001), "Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites", Smart Mater. Struct., 10(5), 867. https://doi.org/10.1088/0964-1726/10/5/303
- Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., Int. J., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175
- Alizada, A.N. and Sofiyev, A.H. (2011), "On the mechanics of deformation and stability of the beam with a nanocoating", J. Reinf. Plast. Compos., 30(18), 1583-1595. https://doi.org/10.1177%2F0731684411428382 https://doi.org/10.1177/0731684411428382
- Annigeri, A.R., Ganesan, N. and Swarnamani, S. (2007), "Free vibration behaviour of multiphase and layered magneto-electroelastic beam", J. Sound Vib., 299(1-2), 44-63. https://doi.org/10.1016/j.jsv.2006.06.044
- Ansari, R., Gholami, R and Rouhi, H. (2015), "Size-dependent nonlinear forced vibration analysis of magneto-electro-thermoelastic Timoshenko nanobeams based upon the nonlocal elasticity theory", Compos. Struct., 126, 216-226. https://doi.org/10.1016/j.compstruct.2015.02.068
- Arefi, M. and Zenkour, A.M. (2016), "Employing sinusoidal shear deformation plate theory for transient analysis of three layers sandwich nanoplate integrated with piezo-magnetic face-sheets", Smart Mater. Struct., 25(11), 115040. https://doi.org/10.1088/0964-1726/25/11/115040
- Barati, M.R. and Zenkour, A. (2017a), "A general bi-Helmholtz nonlocal strain-gradient elasticity for wave propagation in nanoporous graded double-nanobeam systems on elastic substrate", Compos. Struct., 168, 885-892. https://doi.org/10.1016/j.compstruct.2017.02.090
- Barati, M.R. and Zenkour, A.M. (2017b), "Investigating postbuckling of geometrically imperfect metal foam nanobeams with symmetric and asymmetric porosity distributions", Compos. Struct., 182, 91-98. https://doi.org/10.1016/j.compstruct.2017.09.008
- Berrabah, H.M., Tounsi, A., Semmah, A. and Adda, B. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., Int. J., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351
- Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., Int. J., 3(1), 29-37. https://doi.org/10.12989/anr.2015.3.1.029
- Besseghier, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst., Int. J., 19(6), 601-614. https://doi.org/10.12989/sss.2017.19.6.601
- Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017a), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., Int. J., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115
- Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017b), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., Int. J., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115
- Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., Int. J., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
- Ebrahimi, F. and Barati, M.R. (2016), "A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures", Int. J. Eng. Sci., 107, 183-196. https://doi.org/10.1016/j.ijengsci.2016.08.001
- Ebrahimi, F. and Barati, M.R. (2017), "Magnetic field effects on dynamic behavior of inhomogeneous thermo-piezo-electrically actuated nanoplates", J. Brazil. Soc. Mech. Sci. Eng., 39(6), 2203-2223. https://doi.org/10.1007/s40430-016-0646-z
- Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Mathe. Computat., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090
- Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano. Res., Int. J., 4(1), 51-64. https://doi.org/10.12989/anr.2016.4.1.051
- Eringen, A.C. (1972), "Linear theory of nonlocal elasticity and vibration of curved single-walled carbon nanotubes based on nonlocal timoshenko beam theory", Materials dispersion of plane waves", Int. J. Eng. Sci., 10(5), 425-435. https://doi.org/10.1016/0020-7225(72)90050-X
- Eshraghi, I., Jalali, S.K. and Pugno, N.M. (2016), "Imperfection sensitivity of nonlinear, 9(9), 786. https://doi.org/10.3390/ma9090786
- Guo, J., Chen, J. and Pan, E. (2016), "Static deformation of anisotropic layered magnetoelectroelastic plates based on modified couple-stress theory", Compos. Part B: Eng., 107, 84-96. https://doi.org/10.1016/j.compositesb.2016.09.044
- Jandaghian, A.A. and Rahmani, O. (2016), "Free vibration analysis of magneto-electro-thermo-elastic nanobeams resting on a Pasternak foundation", Smart Mater. Struct., 25(3), 035023. https://doi.org/10.1088/0964-1726/25/3/035023
- Ke, L.L. and Wang, Y.S. (2014), "Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory", Physica E: Low-Dimens. Syst. Nanostruct., 63, 52-61. https://doi.org/10.1016/j.physe.2014.05.002
- Kumaravel, A., Ganesan, N. and Sethuraman, R. (2007), "Buckling and vibration analysis of layered and multiphase magneto-electro-elastic beam under thermal environment", Multidiscipl. Model. Mater. Struct., 3(4), 461-476. https://doi.org/10.1163/157361107782106401
- Li, L. and Hu, Y. (2016), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 107, 77-97. https://doi.org/10.1016/j.ijengsci.2016.07.011
- Li, Y. and Shi, Z. (2009), "Free vibration of a functionally graded piezoelectric beam via state-space based differential quadrature", Compos. Struct., 87(3), 257-264. https://doi.org/10.1016/j.compstruct.2008.01.012
- Li, L., Tang, H. and Hu, Y. (2018), "Size-dependent nonlinear vibration of beam-type porous materials with an initial geometrical curvature", Compos. Struct., 184, 1177-1188. https://doi.org/10.1016/j.compstruct.2017.10.052
- Mohammadi, H., Mahzoon, M., Mohammadi, M. and Mohammadi, M. (2014), "Postbuckling instability of nonlinear nanobeam with geometric imperfection embedded in elastic foundation", Nonlinear Dyn., 76(4), 2005-2016. https://doi.org/10.1007/s11071-014-1264-x
- Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory", Smart Struct. Syst., Int. J., 21(4), 397-405. https://doi.org/10.12989/sss.2018.21.4.397
- Mouffoki, A., Bedia, E.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., Int. J., 20(3), 369-383. https://doi.org/10.12989/sss.2017.20.3.369
- Nan, C.W. (1994), "Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases", Phys. Rev. B, 50(9), 6082. https://doi.org/10.1103/PhysRevB.50.6082
- Pan, E. and Han, F. (2005), "Exact solution for functionally graded and layered magneto-electro-elastic plates", Int. J. Eng. Sci., 43(3-4), 321-339. https://doi.org/10.1016/j.ijengsci.2004.09.006
- Shafiei, N. and She, G.L. (2018), "On vibration of functionally graded nano-tubes in the thermal environment", Int. J. Eng. Sci., 133, 84-98. https://doi.org/10.1016/j.ijengsci.2018.08.004
- She, G.L., Jiang, X.Y. and Karami, B. (2019a), "On thermal snapbuckling of FG curved nanobeams", Mater. Res. Express, 6, 115008. https://doi.org/10.1088/2053-1591/ab44f1
- She, G.L., Ren, Y.R. and Yan, K.M. (2019b), "On snap-buckling of porous FG curved nanobeams", Acta Astronautica, 161, 475-484. https://doi.org/10.1016/j.actaastro.2019.04.010
- Sofiyev, A.H., Karaca, Z. and Zerin, Z. (2017), "Non-linear vibration of composite orthotropic cylindrical shells on the nonlinear elastic foundations within the shear deformation theory", Compos. Struct., 159, 53-62. https://doi.org/10.1016/j.compstruct.2016.09.048
- Thai, H.T. and Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009
- Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., Int. J., 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015
- Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., Int. J., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
Cited by
- On the free vibration response of laminated composite plates via FEM vol.39, pp.2, 2020, https://doi.org/10.12989/scs.2021.39.2.149
- Analyzing dynamic response of nonlocal strain gradient porous beams under moving load and thermal environment vol.26, pp.1, 2020, https://doi.org/10.12989/gae.2021.26.1.089
- Finite element simulation for investigation on thermal post-buckling of geometrically imperfect GOP-reinforced beam vol.12, pp.2, 2021, https://doi.org/10.12989/acc.2021.12.2.135
- Nonlinear vibration behavior of hybrid multi-scale cylindrical panels via semi numerical method vol.28, pp.3, 2021, https://doi.org/10.12989/cac.2021.28.3.233