DOI QR코드

DOI QR Code

An efficient hybrid TLBO-PSO-ANN for fast damage identification in steel beam structures using IGA

  • Khatir, S. (Soete Laboratory, Faculty of Engineering and Architecture, Ghent University) ;
  • Khatir, T. (Institute of Science and Technology, Naama University) ;
  • Boutchicha, D. (University of Science and Technology Oran) ;
  • Le Thanh, C. (Soete Laboratory, Faculty of Engineering and Architecture, Ghent University) ;
  • Tran-Ngoc, H. (Soete Laboratory, Faculty of Engineering and Architecture, Ghent University) ;
  • Bui, T.Q. (Institute for Research and Development, Duy Tan University) ;
  • Capozucca, R. (Universita Politecnica delle Marche) ;
  • Abdel-Wahab, M. (Division of Computational Mechanics, Ton Duc Thang University)
  • Received : 2019.08.07
  • Accepted : 2019.11.25
  • Published : 2020.05.25

Abstract

The existence of damages in structures causes changes in the physical properties by reducing the modal parameters. In this paper, we develop a two-stages approach based on normalized Modal Strain Energy Damage Indicator (nMSEDI) for quick applications to predict the location of damage. A two-dimensional IsoGeometric Analysis (2D-IGA), Machine Learning Algorithm (MLA) and optimization techniques are combined to create a new tool. In the first stage, we introduce a modified damage identification technique based on frequencies using nMSEDI to locate the potential of damaged elements. In the second stage, after eliminating the healthy elements, the damage index values from nMSEDI are considered as input in the damage quantification algorithm. The hybrid of Teaching-Learning-Based Optimization (TLBO) with Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO) are used along with nMSEDI. The objective of TLBO is to estimate the parameters of PSO-ANN to find a good training based on actual damage and estimated damage. The IGA model is updated using experimental results based on stiffness and mass matrix using the difference between calculated and measured frequencies as objective function. The feasibility and efficiency of nMSEDI-PSO-ANN after finding the best parameters by TLBO are demonstrated through the comparison with nMSEDI-IGA for different scenarios. The result of the analyses indicates that the proposed approach can be used to determine correctly the severity of damage in beam structures.

Keywords

References

  1. Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M. and Inman, D.J. (2017), "Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks", J. Sound Vib., 388, 154-170. https://doi.org/10.1016/j.jsv.2016.10.043
  2. Anitescu, C., Atroshchenko, E., Alajlan, N. and Rabczuk, T. (2019), "Artificial neural network methods for the solution of second order boundary value problems", Comput. Mater. Continua, 59(1), 345-359. https://doi.org/10.32604/cmc.2019.06641
  3. Benaissa, B., Koppen, M., Wahab, M.A. and Khatir, S. (2017), "Application of proper orthogonal decomposition and radial basis functions for crack size estimation using particle swarm optimization", Journal of Physics: Conference Series, IOP Publishing, 842(1), 012014. https://doi.org/10.1088/1742-6596/842/1/012014
  4. Capozucca, R. (2014), "Vibration of CFRP cantilever beam with damage", Compos. Struct., 116, 211-222. https://doi.org/10.1016/j.compstruct.2014.04.027
  5. Capozucca, R. and Bonci, B. (2015), "Notched CFRP laminates under vibration", Compos. Struct., 122, 367-375. https://doi.org/10.1016/j.compstruct.2014.11.062
  6. Dahak, M., Touat, N. and Benseddiq, N. (2017), "On the classification of normalized natural frequencies for damage detection in cantilever beam", J. Sound Vib., 402, 70-84. https://doi.org/10.1016/j.jsv.2017.05.007
  7. Funari, M.F., Lonetti, P. and Spadea, S. (2019), "A crack growth strategy based on moving mesh method and fracture mechanics", Theor. Appl. Fract. Mech., 102, 103-115. https://doi.org/10.1016/j.tafmec.2019.03.007
  8. Ghasemi, H., Park, H.S. and Rabczuk, T. (2017), "A level-set based IGA formulation for topology optimization of flexoelectric materials", Comput. Methods Appl. Mech. Eng., 313, 239-258. https://doi.org/10.1016/j.cma.2016.09.029
  9. Ghasemi, H., Park, H.S. and Rabczuk, T. (2018), "A multi-material level set-based topology optimization of flexoelectric composites", Comput. Methods Appl. Mech. Eng., 332, 47-62. https://doi.org/10.1016/j.cma.2017.12.005
  10. Gomes, G.F., de Almeida, F.A., Junqueira, D.M., da Cunha Jr, S.S. and Ancelotti Jr, A.C. (2019), "Optimized damage identification in CFRP plates by reduced mode shapes and GA-ANN methods", Eng. Struct., 181, 111-123. https://doi.org/10.1016/j.engstruct.2018.11.081
  11. Guo, H., Zhuang, X. and Rabczuk, T. (2019), "A deep collocation method for the bending analysis of Kirchhoff plate", CMCCOMPUTERS MATERIALS & CONTINUA, 59(2), 433-456. https://doi.org/10.32604/cmc.2019.06660
  12. Hughes, T.J., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Methods Appl. Mech. Eng., 194(39-41), 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008
  13. Kennedy, J. (2011), "Particle swarm optimization", In: Encyclopedia of Machine Learning, Springer, pp. 760-766. https://doi.org/10.1007/978-1-4899-7687-1_630
  14. Khatir, S. and Wahab, M.A. (2019a), "A computational approach for crack identification in plate structures using XFEM, XIGA, PSO and Jaya algorithm", Theor. Appl. Fract. Mech., 103, 102240. https://doi.org/10.1016/j.tafmec.2019.102240
  15. Khatir, S. and Wahab, M.A. (2019b), "Fast simulations for solving fracture mechanics inverse problems using POD-RBF XIGA and Jaya algorithm", Eng. Fract. Mech., 205, 285-300. https://doi.org/10.1016/j.engfracmech.2018.09.032
  16. Khatir, S., Belaidi, I., Serra, R., Wahab, M.A. and Khatir, T. (2015), "Damage detection and localization in composite beam structures based on vibration analysis", Mechanics, 21(6), 472-479. https://doi.org/10.5755/j01.mech.21.6.12526
  17. Khatir, S., Dekemele, K., Loccufier, M., Khatir, T. and Wahab, M.A. (2018a), "Crack identification method in beam-like structures using changes in experimentally measured frequencies and Particle Swarm Optimization", Comptes Rendus Mecanique, 346(2), 110-120. https://doi.org/10.1016/j.crme.2017.11.008
  18. Khatir, S., Wahab, M.A., Benaissa, B. and Koppen, M. (2018b), "Crack identification using eXtended IsoGeometric analysis and particle swarm optimization", In: Fracture, Fatigue and Wear, Springer, pp. 210-222. https://doi.org/10.1007/978-981-13-0411-8_21
  19. Khatir, S., Tiachacht, S., Thanh, C.L., Bui, T.Q. and Wahab, M.A. (2019a), "Damage assessment in composite laminates using ANN-PSO-IGA and Cornwell indicator", Compos. Struct., 111509. https://doi.org/10.1016/j.compstruct.2019.111509
  20. Khatir, S., Wahab, M.A., Boutchicha, D. and Khatir, T. (2019b), "Structural health monitoring using modal strain energy damage indicator coupled with teaching-learning-based optimization algorithm and isogoemetric analysis", J. Sound Vib., 448, 230-246. https://doi.org/10.1016/j.jsv.2019.02.017
  21. Kim, J.T., Park, J.H., Yoon, H.S. and Yi, J.H. (2007), "Vibrationbased damage detection in beams using genetic algorithm", Smart Struct. Syst., Int. J., 3(3), 263-280. https://doi.org/10.12989/sss.2007.3.3.263
  22. Kim, J.T., Park, J.H., Koo, K.Y. and Lee, J.J. (2008), "Acceleration-based neural networks algorithm for damage detection in structures", Smart Struct. Syst., Int. J., 4(5), 583-603. https://doi.org/10.12989/sss.2008.4.5.583
  23. Maity, D. and Saha, A. (2004), "Damage assessment in structure from changes in static parameter using neural networks", Sadhana, 29(3), 315-327. https://doi.org/10.1007/bf02703781
  24. Nanthakumar, S.S., Lahmer, T., Zhuang, X., Zi, G. and Rabczuk, T. (2016), "Detection of material interfaces using a regularized level set method in piezoelectric structures", Inverse Probl. Sci. Eng., 24(1), 153-176. https://doi.org/10.1080/17415977.2015.1017485
  25. Navabian, N., Bozorgnasab, M., Taghipour, R. and Yazdanpanah, O. (2016), "Damage identification in plate-like structure using mode shape derivatives", Arch. Appl. Mech., 86(5), 819-830. https://doi.org/10.1007/s00419-015-1064-x
  26. Odessa, I., Rabinovitch, O. and Frostig, Y. (2019), "High-order crack propagation in compressed sandwich panels", J. Sandw. Struct. Mater., 1099636218824873. https://doi.org/10.1177/1099636218824873
  27. Pandey, A.K., Biswas, M. and Samman, M.M. (1991), "Damage detection from changes in curvature mode shapes", J. Sound Vib., 145(2), 321-332. https://doi.org/10.1016/0022-460x(91)90595-b
  28. Rao, R.V. and More, K.C. (2015), "Optimal design of the heat pipe using TLBO (teaching-learning-based optimization) algorithm", Energy, 80, 535-544. https://doi.org/10.1016/j.energy.2014.12.008
  29. Rukhaiyar, S., Alam, M.N. and Samadhiya, N.K. (2018), "A PSOANN hybrid model for predicting factor of safety of slope", Int. J. Geotech. Eng., 12(6), 556-566. https://doi.org/10.1080/19386362.2017.1305652
  30. Samir, K., Brahim, B., Capozucca, R. and Wahab, M.A. (2018), "Damage detection in CFRP composite beams based on vibration analysis using proper orthogonal decomposition method with radial basis functions and cuckoo search algorithm", Compos. Struct., 187, 344-353. https://doi.org/10.1016/j.compstruct.2017.12.058
  31. Thanh, C.L., Phung-Van, P., Thai, C.H., Nguyen-Xuan, H. and Wahab, M.A. (2018), "Isogeometric analysis of functionally graded carbon nanotube reinforced composite nanoplates using modified couple stress theory", Compos. Struct., 184(Supplement C), 633-649. https://doi.org/10.1016/j.compstruct.2017.10.025
  32. Thanh, C.L., Tran, L.V., Bui, T.Q., Nguyen, H.X. and Abdel-Wahab, M. (2019a), "Isogeometric analysis for size-dependent nonlinear thermal stability of porous FG microplates", Compos. Struct. https://doi.org/10.1016/j.compstruct.2019.04.010
  33. Thanh, C.L., Tran, L.V., Vu-Huu, T. and Abdel-Wahab, M. (2019b), "The size-dependent thermal bending and buckling analyses of composite laminate microplate based on new modified couple stress theory and isogeometric analysis", Comput. Methods Appl. Mech. Eng. https://doi.org/10.1016/j.cma.2019.02.028
  34. Thanh, C.L., Tran, L.V., Vu-Huu, T., Nguyen-Xuan, H. and Abdel-Wahab, M. (2019c), "Size-dependent nonlinear analysis and damping responses of FG-CNTRC micro-plates", Comput. Methods Appl. Mech. Eng. https://doi.org/10.1016/j.cma.2019.05.002
  35. Thanh, C.L., Khatir, S. and Wahab, M.A. (2020), "Free Vibration of Angle-Ply Laminated Micro-plates Using Isogeometric Analysis and Modified Couple Stress Theory", Proceedings of the 13th International Conference on Damage Assessment of Structures, Springer. https://doi.org/10.1007/978-981-13-8331-1_67
  36. Tiachacht, S., Bouazzouni, A., Khatir, S., Behtani, A., Zhou, Y.L.M. and Wahab, M.A. (2018a), "Structural health monitoring of 3D frame structures using finite element modal analysis and genetic algorithm", J. Vibroeng., 20(2), 1272-1272. https://doi.org/10.21595/jve.2018.19767
  37. Tiachacht, S., Bouazzouni, A., Khatir, S., Wahab, M.A., Behtani, A. and Capozucca, R. (2018b), "Damage assessment in structures using combination of a modified Cornwell indicator and genetic algorithm", Eng. Struct., 177, 421-430. https://doi.org/10.1016/j.engstruct.2018.09.070
  38. Tran-Ngoc, H., Khatir, S., De Roeck, G., Bui-Tien, T. and Wahab, M.A. (2019), "An efficient artificial neural network for damage detection in bridges and beam-like structures by improving training parameters using cuckoo search algorithm", Eng. Struct., 199, 109637. https://doi.org/10.1016/j.engstruct.2019.109637
  39. Vo-Duy, T., Ho-Huu, V., Dang-Trung, H. and Nguyen-Thoi, T. (2016), "A two-step approach for damage detection in laminated composite structures using modal strain energy method and an improved differential evolution algorithm", Compos. Struct., 147, 42-53. https://doi.org/10.1016/j.compstruct.2016.03.027
  40. Vu-Bac, N., Duong, T.X., Lahmer, T., Zhuang, X., Sauer, R.A., Park, H.S. and Rabczuk, T. (2018), "A NURBS-based inverse analysis for reconstruction of nonlinear deformations of thin shell structures", Comput. Methods Appl. Mech. Eng., 331, 427-455. https://doi.org/10.1016/j.cma.2017.09.034
  41. Wu, D. and Law, S.S. (2004), "Damage localization in plate structures from uniform load surface curvature", J. Sound Vib., 276(1-2), 227-244. https://doi.org/10.1016/j.jsv.2003.07.040
  42. Zang, C. and Imregun, M. (2001), "Combined neural network and reduced FRF techniques for slight damage detection using measured response data", Arch. Appl. Mech., 71(8), 525-536. https://doi.org/10.1007/s004190100154
  43. Zenzen, R., Belaidi, I., Khatir, S. and Wahab, M.A. (2018), "A damage identification technique for beam-like and truss structures based on FRF and Bat Algorithm", Comptes Rendus Mecanique, 346(12), 1253-1266. https://doi.org/10.1016/j.crme.2018.09.003

Cited by

  1. Prediction Model of the Mechanical Behavior of a Fuel Cell Stack under Strengthened Road Vibrating Conditions vol.2021, 2020, https://doi.org/10.1155/2021/6671547
  2. Damage Identification of Structures Based on Smooth Orthogonal Decomposition and Improved Beetle Antennae Search Algorithm vol.2021, 2020, https://doi.org/10.1155/2021/8857356
  3. Confinement effectiveness of Timoshenko and Euler Bernoulli theories on buckling of microfilaments vol.11, pp.1, 2021, https://doi.org/10.12989/acc.2021.11.1.081
  4. Damage detection in structures using Particle Swarm Optimization combined with Artificial Neural Network vol.28, pp.1, 2021, https://doi.org/10.12989/sss.2021.28.1.001
  5. Free vibration of multi-cracked beams vol.79, pp.4, 2020, https://doi.org/10.12989/sem.2021.79.4.441