Acknowledgement
The authors would like to thank the reviewers for their valuable comments and suggestions to improve the clarity of this study. The authors are thankful to the University of Kashan for supporting this work by Grant No. 891255/8.
References
- Aguib, S., Nour, A., Zahloul, H., Bossis, G., Chevalier, Y. and Lancon, P. (2014), "Dynamic behavior analysis of a magnetorheological elastomer sandwich plate", Int. J. Mech. Sci., 87, 118-136. https://doi.org/10.1016/J.IJMECSCI.2014.05.014
- Amir, S. (2019), "Orthotropic patterns of visco-Pasternak foundation in nonlocal vibration of orthotropic graphene sheet under thermo-magnetic fields based on new first-order shear deformation theory", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(2), 197-208. https://doi.org/10.1177/1464420716670929
- Amir, S., Bidgoli, E.M.-R. and Arshid, E. (2018), "Size-dependent vibration analysis of a three-layered porous rectangular nano plate with piezo-electromagnetic face sheets subjected to pre loads based on SSDT", Mech. Adv. Mater. Struct., 1-15. https://doi.org/10.1080/15376494.2018.1487612
- Amir, S., Arshid, E. and Ghorbanpour Arani, M.R. (2019a), "Size-Dependent Magneto-Electro-Elastic Vibration Analysis of FG Saturated Porous Annular/Circular Micro Sandwich Plates Embedded with Nano-Composite Face sheets Subjected to Multi-Physical Pre Loads", Smart Struct. Syst., Int. J., 23(5), 429-447. https://doi.org/10.12989/sss.2019.23.5.429
- Amir, S., Arshid, E., Rasti-Alhosseini, S.M.A. and Loghman, A. (2019b), "Quasi-3D tangential shear deformation theory for sizedependent free vibration analysis of three-layered FG porous micro rectangular plate integrated by nano-composite faces in hygrothermal environment", J. Thermal Stress., 1-24. https://doi.org/10.1080/01495739.2019.1660601
- Amir, S., Soleimani-Javid, Z. and Arshid, E. (2019c), "Size-dependent free vibration of sandwich micro beam with porous core subjected to thermal load based on SSDBT", ZAMM - J. Appl. Mathe. Mech. / Zeitschrift Fur Angewandte Mathematik Und Mechanik. https://doi.org/10.1002/zamm.201800334
- Anh, V.T.T., Bich, D.H. and Duc, N.D. (2015), "Nonlinear stability analysis of thin FGM annular spherical shells on elastic foundations under external pressure and thermal loads", Eur. J. Mech. - A/Solids, 50, 28-38. https://doi.org/10.1016/J.EUROMECHSOL.2014.10.004
- Arshid, E. and Khorshidvand, A.R. (2018), "Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method", Thin- Wall. Struct., 125, 220-233. https://doi.org/10.1016/j.tws.2018.01.007
- Arshid, E., Khorshidvand, A.R. and Khorsandijou, S.M. (2019a), "The Effect of Porosity on Free Vibration of SPFG Circular Plates Resting on visco-Pasternak Elastic Foundation Based on CPT, FSDT and TSDT", Struct. Eng. Mech., Int. J., 70(1), 97-112. http://dx.doi.org/10.12989/sem.2019.70.1.097
- Arshid, E., Kiani, A. and Amir, S. (2019b), "Magneto-electroelastic vibration of moderately thick FG annular plates subjected to multi physical loads in thermal environment using GDQ method by considering neutral surface", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(10), 2140-2159. https://doi.org/10.1177/1464420719832626
- Arshid, E., Kiani, A., Amir, S. and Zarghami Dehaghani, M. (2019c), "Asymmetric free vibration analysis of first-order shear deformable functionally graded magneto-electro-thermo-elastic circular plates", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(16), 5659-5675. https://doi.org/10.1177/0954406219850598
- Babu, V.R. and Vasudevan, R. (2016), "Dynamic analysis of tapered laminated composite magnetorheological elastomer (MRE) sandwich plates", Smart Mater. Struct., 25(3), 035006. https://doi.org/10.1088/0964-1726/25/3/035006
- Bayat, R., Jafari, A.A. and Rahmani, O. (2015), "Analytical Solution for Free Vibration of Laminated Curved Beam with Magnetostrictive Layers", Int. J. Appl. Mech., 7(3), 1550050. https://doi.org/10.1142/S1758825115500507
- Brush, D.O., Almroth, B.O. and Hutchinson, J.W. (1975), "Buckling of bars, plates, and shells", J. Appl. Mech., 42, 911.
- Bui, T.Q. and Nguyen, M.N. (2011), "A moving Kriging interpolation-based meshfree method for free vibration analysis of Kirchhoff plates", Comput. Struct., 89(3-4), 380-394. https://doi.org/10.1016/j.compstruc.2010.11.006
- Bui, T.Q., Nguyen, T.N. and Nguyen-Dang, H. (2009), "A moving Kriging interpolation-based meshless method for numerical simulation of Kirchhoff plate problems", Int. J. Numer. Methods Eng., 77(10), 1371-1395. https://doi.org/10.1002/nme.2462
- Bui, T.Q., Nguyen, M.N. and Zhang, C. (2011a), "Buckling analysis of Reissner-Mindlin plates subjected to in-plane edge loads using a shear-locking-free and meshfree method", Eng. Anal. Boundary Elem., 35(9), 1038-1053. https://doi.org/10.1016/J.ENGANABOUND.2011.04.001
- Bui, T.Q., Nguyen, M.N. and Zhang, C. (2011b), "An efficient meshfree method for vibration analysis of laminated composite plates", Computat. Mech., 48(2), 175-193. https://doi.org/10.1007/s00466-011-0591-8
- Bui, T.Q., Do, T.V., Ton, L.H.T., Doan, D.H., Tanaka, S., Pham, D.T. and Hirose, S. (2016), "On the high temperature mechanical behaviors analysis of heated functionally graded plates using FEM and a new third-order shear deformation plate theory", Compos. Part B: Eng., 92, 218-241. https://doi.org/10.1016/j.compositesb.2016.02.048
- Chakraverty, S., Bhat, R.B. and Stiharu, I. (2001), "Free vibration of annular elliptic plates using boundary characteristic orthogonal polynomials as shape functions in the Rayleigh-Ritz method", J. Sound Vib., 241(3), 524-539. https://doi.org/10.1006/jsvi.2000.3243
- Chan, D.Q., Quan, T.Q., Kim, S.-E. and Duc, N.D. (2019), "Nonlinear dynamic response and vibration of shear deformable piezoelectric functionally graded truncated conical panel in thermal environments", Eur. J. Mech. - A/Solids, 77, 103795. https://doi.org/10.1016/J.EUROMECHSOL.2019.103795
- Chen, L. and Hansen, C.H. (2005), "Active vibration control of a magnetorheological sandwich beam", Proceedings Acoustics, 93-98.
- Duan, Y., Ni, Y.Q., Zhang, H., Spencer Jr, B.F., Ko, J.M. and Dong, S. (2019), "Design formulas for vibration control of sagged cables using passive MR dampers", Smart Struct. Syst., Int. J., 23(6), 537-551. https://doi.org/10.12989/sss.2019.23.6.537
- Duc, N.D. (2014), Nonlinear static and dynamic stability of functionally graded plates and shells, Vietnam National University Press.
- Duc, N.D. (2018), "Nonlinear thermo-electro-mechanical dynamic response of shear deformable piezoelectric Sigmoid functionally graded sandwich circular cylindrical shells on elastic foundations", J. Sandw. Struct. Mater., 20(3), 351-378. https://doi.org/10.1177/1099636216653266
- Duc, N.D. and Cong, P.H. (2018), "Nonlinear thermo-mechanical dynamic analysis and vibration of higher order shear deformable piezoelectric functionally graded material sandwich plates resting on elastic foundations", J. Sandw. Struct. Mater., 20(2), 191-218. https://doi.org/10.1177/1099636216648488
- Duc, N.D., Quan, T.Q. and Luat, V.D. (2015a), "Nonlinear dynamic analysis and vibration of shear deformable piezoelectric FGM double curved shallow shells under damping-thermoelectro-mechanical loads", Compos. Struct., 125, 29-40. https://doi.org/10.1016/J.COMPSTRUCT.2015.01.041
- Duc, N.D., Tuan, N.D., Tran, P., Dao, N.T. and Dat, N.T. (2015b), "Nonlinear dynamic analysis of Sigmoid functionally graded circular cylindrical shells on elastic foundations using the third order shear deformation theory in thermal environments", Int. J. Mech. Sci., 101, 338-348. https://doi.org/10.1016/J.IJMECSCI.2015.08.018
- Duc, N.D., Cong, P.H., Anh, V.M., Quang, V.D., Tran, P., Tuan, N.D. and Thinh, N.H. (2015c), "Mechanical and thermal stability of eccentrically stiffened functionally graded conical shell panels resting on elastic foundations and in thermal environment", Compos. Struct., 132, 597-609. https://doi.org/10.1016/J.COMPSTRUCT.2015.05.072
- Duc, N.D., Cong, P.H. and Quang, V.D. (2016a), "Nonlinear dynamic and vibration analysis of piezoelectric eccentrically stiffened FGM plates in thermal environment", Int. J. Mech. Sci., 115, 711-722. https://doi.org/10.1016/J.IJMECSCI.2016.07.010
- Duc, N.D., Bich, D.H. and Cong, P.H. (2016b), "Nonlinear thermal dynamic response of shear deformable FGM plates on elastic foundations", J. Thermal Stress., 39(3), 278-297. https://doi.org/10.1080/01495739.2015.1125194
- Duc, N.D., Lee, J., Nguyen-Thoi, T. and Thang, P.T. (2017), "Static response and free vibration of functionally graded carbon nanotube-reinforced composite rectangular plates resting on Winkler-Pasternak elastic foundations", Aerosp. Sci. Technol., 68, 391-402. https://doi.org/10.1016/J.AST.2017.05.032
- Ebrahimi, F. and Dabbagh, A. (2018a), "Thermo-magnetic field effects on the wave propagation behavior of smart magnetostrictive sandwich nanoplates", Eur. Phys. J. Plus, 133(3), 97. https://doi.org/10.1140/epjp/i2018-11910-7
- Ebrahimi, F. and Dabbagh, A. (2018b), "Wave propagation analysis of magnetostrictive sandwich composite nanoplates via nonlocal strain gradient theory", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(22), 4180-4192. https://doi.org/10.1177/0954406217748687
- Eshaghi, M., Sedaghati, R. and Rakheja, S. (2015), "The effect of magneto-rheological fluid on vibration suppression capability of adaptive sandwich plates: Experimental and finite element analysis", J. Intel. Mater. Syst. Struct., 26(14), 1920-1935. https://doi.org/10.1177/1045389X15586449
- Ghorbanpour Arani, A. and Abdollahian, M. (2017), "Transient response of FG higher-order nanobeams integrated with magnetostrictive layers using modified couple stress theory", Mech. Adv. Mater. Struct., 26(4), 359-371. https://doi.org/10.1080/15376494.2017.1387326
- Ghorbanpour Arani, A. and Khoddami Maraghi, Z. (2016), "A feedback control system for vibration of magnetostrictive plate subjected to follower force using sinusoidal shear deformation theory", Ain Shams Eng. J., 7(1), 361-369. https://doi.org/10.1016/J.ASEJ.2015.04.010
- Ghorbanpour Arani, A., BabaAkbar Zarei, H., Eskandari, M. and Pourmousa, P. (2017a), "Vibration behavior of visco-elastically coupled sandwich beams with magnetorheological core and three-phase carbon nanotubes/fiber/polymer composite facesheets subjected to external magnetic field", J. Sandw. Struct. Mater., 21(7), 2194-2218. https://doi.org/10.1177/1099636217743177
- Ghorbanpour Arani, A., Khoddami Maraghi, Z. and Khani Arani, H. (2017b), "Vibration control of magnetostrictive plate under multi-physical loads via trigonometric higher order shear deformation theory", J. Vib. Control, 23(19), 3057-3070. https://doi.org/10.1177/1077546315588222
- Ghorbanpour Arani, A., Pourjamshidian, M., Arefi, M. and Arani, M.R.G. (2019), "Application of nonlocal elasticity theory on the wave propagation of flexoelectric functionally graded (FG) timoshenko nano-beams considering surface effects and residual surface stress", Smart Struct. Syst., Int. J., 23(2), 141-153. https://doi.org/10.12989/sss.2019.23.2.141
- Guerroudj, H.Z., Yeghnem, R., Kaci, A., Zaoui, F.Z., Benyoucef, S. and Tounsi, A. (2018), "Eigenfrequencies of advanced composite plates using an efficient hybrid quasi-3D shear deformation theory", Smart Struct. Syst., Int. J., 22(1), 121-132. https://doi.org/10.12989/sss.2018.22.1.121
- Huang, H.W., Liu, T.T. and Sun, L.M. (2019), "Multi-mode cable vibration control using MR damper based on nonlinear modeling", Smart Struct. Syst., Int. J., 23(6), 565-577. https://doi.org/10.12989/sss.2019.23.6.565
- Karami, B. and Shahsavari, D. (2019), "Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers", Smart Struct. Syst., Int. J., 23(3), 215-225. https://doi.org/10.12989/sss.2019.23.3.215
- Lara-Prieto, V., Parkin, R., Jackson, M., Silberschmidt, V. and Kesy, Z. (2010), "Vibration characteristics of MR cantilever sandwich beams: experimental study", Smart Mater. Struct., 19(1), 015005. https://doi.org/10.1088/0964-1726/19/1/015005
- MalekzadehFard, K., Gholami, M., Reshadi, F. and Livani, M. (2017), "Free vibration and buckling analyses of cylindrical sandwich panel with magneto rheological fluid layer", J. Sandw. Struct. Mater., 19(4), 397-423. https://doi.org/10.1177/1099636215603034
- Manoharan, R., Vasudevan, R. and Jeevanantham, A.K. (2014), "Dynamic characterization of a laminated composite magnetorheological fluid sandwich plate", Smart Mater. Struct., 23(2), 025022. https://doi.org/10.1088/0964-1726/23/2/025022
- Minh, P.P. and Duc, N.D. (2019), "The effect of cracks on the stability of the functionally graded plates with variable-thickness using HSDT and phase-field theory", Compos. Part B: Eng., 175, 107086. https://doi.org/10.1016/J.COMPOSITESB.2019.107086
- Minh, P.P., Van Do, T., Duc, D.H. and Duc, N.D. (2018), "The stability of cracked rectangular plate with variable thickness using phase field method", Thin-Wall. Struct., 129, 157-165. https://doi.org/10.1016/J.TWS.2018.03.028
- Mohammadimehr, M., Arshid, E., Alhosseini, S.M.A.R., Amir, S. and Arani, M.R.G. (2019), "Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation", Struct. Eng. Mech., Int. J., 70(6), 683-702. https://doi.org/10.12989/sem.2019.70.6.683
- Mohammadrezazadeh, S. and Jafari, A. (2019), "Vibration control of laminated truncated conical shell via magnetostrictive layers", Mech. Adv. Mater. Struct., 1-9. https://doi.org/10.1080/15376494.2018.1525627
- Naji, J., Zabihollah, A. and Behzad, M. (2016), "Layerwise theory in modeling of magnetorheological laminated beams and identification of magnetorheological fluid", Mech. Res. Commun., 77, 50-59. https://doi.org/10.1016/J.MECHRESCOM.2016.09.003
- Naji, J., Zabihollah, A. and Behzad, M. (2018), "Vibration characteristics of laminated composite beams with magnetorheological layer using layerwise theory", Mech. Adv. Mater. Struct., 25(3), 202-211. https://doi.org/10.1080/15376494.2016.1255819
- Ramamoorthy, M., Rajamohan, V. and AK, J. (2016), "Vibration analysis of a partially treated laminated composite magnetorheological fluid sandwich plate", J. Vib. Control, 22(3), 869-895. https://doi.org/10.1177/1077546314532302
- Shokravi, M. (2018), "Dynamic buckling of smart sandwich beam subjected to electric field based on hyperbolic piezoelasticity theory", Smart Struct. Syst., Int. J., 22(3), 327-334. https://doi.org/10.12989/sss.2018.22.3.327
- Shu, C. (2012), Differential Quadrature and Its Application in Engineering, Springer Science & Business Media.
- Sidhoum, I.A., Boutchicha, D., Benyoucef, S. and Tounsi, A. (2018), "A novel quasi-3D hyperbolic shear deformation theory for vibration analysis of simply supported functionally graded plates", Smart Struct. Syst., Int. J., 22(3), 303-314. https://doi.org/10.12989/sss.2018.22.3.303
- Squire, P. (1999), "Magnetostrictive materials for sensors and actuators", Ferroelectrics, 228(1), 305-319. https://doi.org/10.1080/00150199908226144
- Suman, S.D., Hirwani, C.K., Chaturvedi, A. and Panda, S.K. (2017), "Effect of magnetostrictive material layer on the stress and deformation behaviour of laminated structure", IOP Conference Series: Materials Science and Engineering, 178(1), 012026. https://doi.org/10.1088/1757-899X/178/1/012026
- Tabbakh, M. and Nasihatgozar, M. (2018), "Buckling analysis of nanocomposite plates coated by magnetostrictive layer", Smart Struct. Syst., Int. J., 22(6), 743-751. https://doi.org/10.12989/sss.2018.22.6.743
- Thom, D.V., Nguyen, D.K., Duc, N.D., Doan, D.H. and Bui, T.Q. (2017), "Analysis of bi-directional functionally graded plates by FEM and a new third-order shear deformation plate theory", Thin-Wall. Struct., 119, 687-699. https://doi.org/10.1016/J.TWS.2017.07.022
- Tohidi, H., Hosseini-Hashemi, S.H. and Maghsoudpour, A. (2018), "Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory", Smart Struct. Syst., Int. J., 22(5), 527-546. https://doi.org/10.12989/sss.2018.22.5.527
- Tzou, H.S., Lee, H.-J. and Arnold, S.M. (2004), "Smart Materials, Precision Sensors/Actuators, Smart Structures, and Structronic Systems", Mech. Adv. Mater. Struct., 11(4-5), 367-393. https://doi.org/10.1080/15376490490451552
- Yeh, J.-Y. (2013), "Vibration analysis of sandwich rectangular plates with magnetorheological elastomer damping treatment", Smart Mater. Struct., 22(3), 035010. https://doi.org/10.1088/0964-1726/22/3/035010
- Yeh, J.-Y. (2014), "Vibration characteristics analysis of orthotropic rectangular sandwich plate with magnetorheological elastomer", Procedia Eng., 79, 378-385. https://doi.org/10.1016/J.PROENG.2014.06.358
- Yu, T., Yin, S., Bui, T.Q., Xia, S., Tanaka, S. and Hirose, S. (2016), "NURBS-based isogeometric analysis of buckling and free vibration problems for laminated composites plates with complicated cutouts using a new simple FSDT theory and level set method", Thin-Wall. Struct., 101, 141-156. https://doi.org/10.1016/j.tws.2015.12.008
- Yu, T., Yin, S., Bui, T.Q., Liu, C. and Wattanasakulpong, N. (2017), "Buckling isogeometric analysis of functionally graded plates under combined thermal and mechanical loads", Compos. Struct., 162, 54-69. https://doi.org/10.1016/j.compstruct.2016.11.084
- Zhang, R., Ni, Y.-Q., Duan, Y. and Ko, J.-M. (2019), "Development of a full-scale magnetorheological damper model for open-loop cable vibration control", Smart Struct. Syst., Int. J., 23(6), 553-564. https://doi.org/10.12989/sss.2019.23.6.553
- Zhou, Z.H., Wong, K.W., Xu, X.S. and Leung, A.Y.T. (2011), "Natural vibration of circular and annular thin plates by Hamiltonian approach", J. Sound Vib., 330(5), 1005-1017. https://doi.org/10.1016/J.JSV.2010.09.015
- Zucca, M., Raffa, F.A., Fasana, A. and Colella, N. (2015), "A simplified vibration compensation through magnetostrictive actuators", J. Vib. Control, 21(14), 2903-2912. https://doi.org/10.1177/1077546313518956
Cited by
- Vibration characteristics of microplates with GNPs-reinforced epoxy core bonded to piezoelectric-reinforced CNTs patches vol.11, pp.2, 2020, https://doi.org/10.12989/anr.2021.11.2.115
- Vibration analysis of sandwich beam with honeycomb core and piezoelectric facesheets affected by PD controller vol.28, pp.2, 2020, https://doi.org/10.12989/sss.2021.28.2.195