DOI QR코드

DOI QR Code

Investigations on a vertical isolation system with quasi-zero stiffness property

  • Zhou, Ying (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University) ;
  • Chen, Peng (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University)
  • Received : 2019.07.16
  • Accepted : 2019.12.24
  • Published : 2020.05.25

Abstract

This paper presents a series of experimental and numerical investigations on a vertical isolation system with quasi-zero stiffness (QZS) property. The isolation system comprises a linear helical spring and disk spring. The disk spring is designed to provide variable stiffness to the system. Orthogonal static tests with different design parameters are conducted to verify the mathematical and mechanical models of the isolation system. The deviations between theoretical and test results influenced by the design parameters are summarized. Then, the dynamic tests for the systems with different under-load degrees are performed, including the fast sweeping tests, harmonic excitation tests, and half-sine impact tests. The displacement transmissibility, vibration reduction rate, and free vibration response are calculated. Based on the test results, the variation of the transmission rule is evaluated and the damping magnitudes and types are identified. In addition, the relevant numerical time history responses are calculated considering the nonlinear behavior of the system. The results indicate that the QZS isolation system has a satisfactory isolation effect, while a higher damping level can potentially promote the isolation performance in the low-frequency range. It is also proved that the numerical calculation method accurately predicts the transmission character of the isolation system.

Keywords

Acknowledgement

The authors acknowledge the financial support from National Natural Science Foundation of China (Grant No. 51878502).

References

  1. Alabuzhev, P., Gritchin, A. and Kim, L. (1989), Vibration Protecting and Measuring Systems with Quasi-zero Stiffness, Taylor & Francis Group, New York, NY, USA.
  2. Blair, D.J., Liu, J., Moghaddam, E.F. and Ju, L. (1994), "Performance of an ultra low-frequency folded pendulum", Phys. Lett. A, 193(3), 223-226. https://doi.org/10.1016/0375-9601(94)90587-8
  3. Budiansky, B. (1974), Theory of Buckling and Post-bucking Behavior of Elastic Structures, Elsevier, New York, NY, USA.
  4. Carrella, A., Brennan, M.J., Kovacic, I. and Waters, T.P. (2009), "On the force transmissibility of avibration isolator with quasizero-stiffness", J. Sound Vibr., 322(4-5), 707-717. https://doi.org/10.1016/j.jsv.2008.11.034
  5. Chen, L., Sun, L. and Nagarajaiah, S. (2015), "Cable with discrete negative stiffness device and viscous damper: Passive realization and general characteristics", Smart. Struct. Syst., Int. J., 15(3), 627-643. http://dx.doi.org/10.12989/sss.2015.15.3.627
  6. Chopra, A.K. (1995), Dynamics of Structures: Theory and Applications to Earthquake Engineering, Prentice Hall, Englewood Cliffs, NJ, USA.
  7. Cimellaro, G.P., Domaneschi, M. and Warn, G. (2018), "Threedimensional base isolation using vertical negative stiffness devices", J. Earthqu. Eng., 1-29. https://doi.org/10.1080/13632469.2018.1493004
  8. Demetriades, G.F., Constantinou, M.C. and Reinhorn, A.M. (1993), "Study of wire rope systems for seismic protection of equipment in buildings", Eng. Struct., 15(5), 321-334. https://doi.org/10.1016/0141-0296(93)90036-4
  9. Farsangi, E.N., Tasnimi, A.A., Yang, T.Y., Takewaki, I. and Mohammadhasani, M. (2018), "Seismic performance of a resilient low-damage base isolation system under combined vertical and horizontal excitations", Smart. Struct. Syst., Int. J., 22(4), 383-397. http://dx.doi.org/10.12989/sss.2018.22.4.383
  10. Gazi, H. and Alhan, C. (2018), "Probabilistic sensitivity of baseisolated buildings to uncertainties", Smart. Struct. Syst., Int. J.., 22(4), 441-457. http://dx.doi.org/10.12989/sss.2018.22.4.441
  11. Goodwin, A.J.H. (1965), Vibration Isolators; U.S. Patent No. 3,202,388.
  12. Guzman Pujols, J.C. and Ryan, K.L. (2018), "Computational simulation of slab vibration and horizontal-vertical coupling in a full scale test bed subjected to 3D shaking at E-Defense", Earthq. Eng. Struct. Dyn., 47(2), 438-459. https://doi.org/10.1002/eqe.2973
  13. Halwes, D.R. and Simmons, W.A. (1980), U.S. Patent No. 4, 236,607.
  14. Hu, K., Zhou, Y., Jiang, L., Chen, P. and Qu, G. (2017), "A mechanical tension-resistant device for lead rubber bearings", Eng. Struct., 152, 238-250. https://doi.org/10.1016/j.engstruct.2017.09.006
  15. Kwon, I.Y., Yang, H.T., Hansma, P.K. and Randall, C.J. (2015), "Implementable bio-inspired passive negative spring actuator for full-scale structural control under seismic excitation", J. Struct. Eng., 142(1), 04015079. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001323
  16. Lin, T.K., Lu, L.Y. and Chen, C.J. (2018), "Semi-active leveragetype isolation system considering minimum structural energy", Smart. Struct. Syst., Int. J., 21(3), 373-387. https://doi.org/10.12989/sss.2018.21.3.373
  17. Loh, C.H. and Chao, C.H. (1996), "Effectiveness of active tuned mass damper and seismic isolation on vibration control of multistorey building", J. Sound Vibr. 193(4), 773-192. https://doi.org/10.1006/jsvi.1996.0315
  18. Lu, L., Duan, Y.F., Spencer, Jr. B.F., Lu, X.L. and Zhou, Y. (2017), "Inertial mass damper for mitigating cable vibration", Struct. Control. Health Monit., 24(10), e1986. https://doi.org/10.1002/stc.1986
  19. Meng, L., Sun, J. and Wu, W. (2015), "Theoretical design and characteristics analysis of a quasi-zero stiffness isolator using a disk spring as negative stiffness element", Shock Vib., 1-19. http://dx.doi.org/10.1155/2015/813763
  20. Pasala, D.T.R., Sarlis, A.A, Reinhorn, A.M., Nagarajaiah, S., Constantinou, M.C. and Taylor, D. (2014), "Apparent weaken in SDOF yielding structures using a negative stiffness device: Experimental and analytical study", J. Struct. Eng., 141(4), 04014130. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001077
  21. Platus, D.L. (1992), "Negative-stiffness-mechanism vibration isolation system", In: Vibration Control in Microelectronics, Optics, and Metrology, Denver, CO, USA.
  22. Rita, A.D., McGarvey, J.H. and Jones, R. (1978), "Helicopter rotor isolation evaluation utilizing the dynamic antiresonant vibration isolator", J. Am. Helicopter Soc., 23(1), 22-29. https://doi.org/10.4050/JAHS.23.22
  23. Rivin, E.I. (2003), Dynamic Properties of Vibration Isolation Systems, Asme Press, New York, NY, USA.
  24. Sarlis, A.A., Pasala, D.T.R., Constantinou, M.C., Reinhorn, A.M., Nagarajaiah, S. and Taylor, D. (2012), "Negative stiffness device for seismic protection of structures", J. Struct. Eng., 139(7), 1124-1133. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000616
  25. Sciulli, D. and Inman, D.J. (1998), "Isolation design for a flexible system", J. Sound Vib., 216(2), 251-267. https://doi.org/10.1006/jsvi.1998.1667
  26. Shi, X. and Zhu, S.Y. (2015), "Magnetic negative stiffness dampers", Smart Mater. Struct., 24(7), 072002. https://doi.org/10.1088/0964-1726/24/7/072002
  27. Shi, X. and Zhu, S.Y. (2017), "Simulation and optimization of magnetic negative stiffness dampers", Sens. Actuator A-Phys., 259, 14-33. https://doi.org/10.1016/j.sna.2017.03.026
  28. Shi, X., Zhu, S.Y., Ni, Y.Q. and Li, J. (2018), "Vibration suppression in high-speed trains with negative stiffness dampers", Smart. Struct. Syst., Int. J., 21(5), 653-668. https://doi.org/10.12989/sss.2018.21.5.653
  29. Tomlinson, G.R. and Worden, K. (2000), Nonlinearity in Structural Dynamics: Detection, Identification and Modelling, CRC Press, Boca Raton, FL, USA.
  30. Walsh, K.K., Boso, E., Steinberg, E.P., Haftman, J.T. and Littell, W.N. (2018), "Variable negative stiffness device for seismic protection of building structures through apparent weakening", J. Eng. Mech., 144(9), 04018090. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001512
  31. Winterflood, J. and Blair, D.G. (1998), "A long-period vertical vibration isolator for gravitational wave detection", Phys. Lett. A, 243(1-2), 1-6. https://doi.org/10.1016/S0375-9601(98)00193-5
  32. Winterflood, J., Losurdo, G. and Blair, D.G. (1999), "Initial results from a long-period conical pendulum vibration isolator with application for gravitational wave detection", Phys. Lett. A, 263(1-2), 9-14. https://doi.org/10.1016/S0375-9601(99)00715-X
  33. Zheng, Y., Li, Q., Yan, B., Luo, Y. and Zhang, X. (2018), "A stewart isolator with high-static-low-dynamic stiffness struts based on negative stiffness magnetic springs", J. Sound Vibr. 422, 390-408. https://doi.org/10.1016/j.jsv.2018.02.046
  34. Zhou, Y. and Chen, P. (2017), "Shaking table tests and numerical studies on the effect of viscous dampers on an isolated RC building by friction pendulum bearings", Soil Dyn. Earthq. Eng., 100, 330-344. https://doi.org/10.1016/j.soildyn.2017.06.002
  35. Zhou, Y., Chen, P. and Mosqueda, G. (2019), "Analytical and numerical investigation of quasi-zero stiffness vertical isolation system", J. Eng. Mech., 145(6), 04019035. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001611.