DOI QR코드

DOI QR Code

Reliability analysis of proposed capacity equation for predicting the behavior of steel-tube concrete columns confined with CFRP sheets

  • Raza, Ali (Department of Civil Engineering, University of Engineering and Technology) ;
  • Khan, Qaiser uz Zaman (Department of Civil Engineering, University of Engineering and Technology) ;
  • Ahmad, Afaq (Department of Civil Engineering, University of Engineering and Technology)
  • Received : 2019.06.28
  • Accepted : 2020.03.31
  • Published : 2020.05.25

Abstract

Due to higher stiffness to weight, higher corrosion resistance, higher strength to weight ratios and good durability, concrete composite structures provide many advantages as compared with conventional materials. Thus, they have wide applications in the field of concrete construction. This research focuses on the structural behavior of steel-tube CFRP confined concrete (STCCC) columns under axial concentric loading. A nonlinear finite element analysis (NLFEA) model of STCCC columns was simulated using ABAQUS which was then, calibrated for different material and geometric models of concrete, steel tube and CFRP material using the experimental results from the literature. The comparative study of the NLFEA predictions and the experimental results indicated that the proposed constitutive NLFEA model can accurately predict the structural performance of STCCC columns. After the calibration of NLFEA model, an extensive parametric study was performed to examine the effects of different critical parameters of composite columns such as; (i) unconfined concrete strength, (ii) number of CFRP layers, (iii) thickness of steel tube and (iv) concrete core diameter, on the axial load capacity. Furthermore, a large database of axial strength of 700 confined concrete compression members was developed from the previous researches to give an analytical model that predicts the ultimate axial strength of composite columns accurately. The comparison of the predictions of the proposed analytical model was done with the predictions of 216 NLFEA models from the parametric study. A close agreement was represented by the predictions of the proposed constitutive NLFEA model and the analytical model.

Keywords

Acknowledgement

The authors pay thanks to CAD Laboratory of Department of Civil Engineering, UET Taxila for providing the facility of numerical modeling.

References

  1. Alfarah, B., Lopez-Almansa, F. and Oller S. (2017), "New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures", J. Eng. Struct., 132, 70-86. https://doi.org/10.1016/j.engstruct.2016.11.022.
  2. Anderson, T.L. (1995), Fracture Mechanics: Fundamentals and Applications, CRC Press, New York.
  3. ASCE (1982), Task Committee on Finite Element Analysis of Reinforced Concrete Structures. State-of-the-art Report on Finite Element Analysis of Reinforced Concrete, American Society of Civil Engineers.
  4. Ashraf, M., Gardner, L. and Nethercot, D.A. (2006), "Finite element modelling of structural stainless steel cross-sections", Thin Wall. Struct., 44(10), 1048-1062. https://doi.org/10.1016/j.tws.2006.10.010.
  5. Barbero, E.J., Cosso, F.A., Roman, R. and Weadon, T.L. (2013), "Determination of material parameters for Abaqus progressive damage analysis of E-glass epoxy laminates", Compos. Part B: Eng., 46, 211-220. https://doi.org/10.1016/j.compositesb.2012.09.069.
  6. Behfarnia, K. and Shirneshan, A. (2017), "A numerical study on behavior of CFRP strengthened shear wall with opening", Comput. Concrete, 19(2), 179-189. https://doi.org/10.12989/cac.2017.19.2.179.
  7. British Standards Institution (2004), Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings, Eurocode 2.
  8. Buchanan, C., Gardner, L. and Liew, A. (2016), "The continuous strength method for the design of circular hollow sections", J. Constr. Steel Res., 118, 207-216. https://doi.org/10.1016/j.jcsr.2015.11.006.
  9. Chang, X., Ru, Z.L., Zhou, W. and Zhang, Y.B. (2013), "Study on concrete-filled stainless steel-carbon steel tubular (CFSCT) stub columns under compression", Thin Wall. Struct., 63, 125-133. https://doi.org/10.1016/j.tws.2012.10.002.
  10. Diaz Valdes, S. and Soutis, C. (2000), "Health monitoring of composites using Lamb waves generated by piezoelectric devices", Plast. Rub. Compos., 29(9), 496-502. https://doi.org/10.1179/146580100101541328.
  11. Diaz Valdes, S.H. and Soutis, C. (2002), "Real-time nondestructive evaluation of fiber composite laminates using low-frequency Lamb waves", J. Acoust. Soc. Am., 111(5), 2026-2033. https://doi.org/10.1121/1.1466870.
  12. Ding, F.X., Liu, J., Liu, X.M., Yu, Z.W. and Li, D.W. (2015), "Mechanical behavior of circular and square concrete filled steel tube stub columns under local compression", Thin Wall. Struct., 94, 155-166. https://doi.org/10.1016/j.tws.2015.04.020.
  13. Ellobody, E. (2013), "A consistent nonlinear approach for analysing steel, cold-formed steel, stainless steel and composite columns at ambient and fire conditions", Thin Wall. Struct., 68, 1-17. https://doi.org/10.1016/j.tws.2013.02.016.
  14. Ellobody, E., Young, B. and Lam, D. (2006), "Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns", J. Constr. Steel Res., 62(7), 706-715. https://doi.org/10.1016/j.jcsr.2005.11.002.
  15. Fam, A., Qie, F.S. and Rizkalla, S. (2004), "Concrete-filled steel tubes subjected to axial compression and lateral cyclic loads", J. Struct. Eng., 130(4), 631-640. https://doi.org/10.1061/(asce)0733-9445(2004)130:4(631).
  16. Fan, X., Wu, Z., Wu, Y. and Zheng, J. (2013), "An efficient method for the compressive behavior of FRP-confined concrete cylinders", Comput. Concrete, 12(4), 499-518. https://doi.org/10.12989/cac.2013.12.4.499.
  17. Fardis, M.N. and Khalili H.H. (1982), "FRP-encased concrete as a structural material", Mag. Concrete Res., 34(121), 191-202. https://doi.org/10.1680/macr.1982.34.121.191.
  18. Gamino, A.L., Bittencourt, T.N. and de Oliveira e Sousa, J.L.A. (2009), "Finite element computational modeling of externally bonded CFRP composites flexural behavior in RC beams", Comput. Concrete, 6(3), 187-202. https://doi.org/10.12989/cac.2009.6.3.187.
  19. Gardner, L., Cruise, R.B., Sok, C.P., Krishnan, K. and Ministro Dos Santos, J. (2007), "Life-cycle costing of metallic structures", Proc. Inst. Civil Eng.-Eng. Sustain., 160(4), pp. 167-177. https://doi.org/10.1680/ensu.2007.160.4.167.
  20. Genikomsou, A.S. and Maria Anna, P. (2015), "Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS", Eng. Struct., 98, 38-48. https://doi.org/10.1016/j.engstruct.2015.04.016.
  21. Hadi, M.N., Khan, Q.S. and Sheikh, M.N. (2016), "Axial and flexural behavior of unreinforced and FRP bar reinforced circular concrete filled FRP tube columns", Constr. Build. Mater., 122, 43-53. https://doi.org/10.1016/j.conbuildmat.2016.06.044.
  22. Han, L.H., Li, W. and Bjorhovde, R. (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members", J. Constr. Steel Res., 100, 211-228. https://doi.org/10.1016/j.jcsr.2014.04.016.
  23. Hany, N.F., Hantouche, E.G. and Harajli, M.H. (2016), "Finite element modeling of FRP-confined concrete using modified concrete damaged plasticity", Eng. Struct., 125, 1-14. https://doi.org/10.1016/j.engstruct.2016.06.047.
  24. Hashin, Z. (1980), "Failure criteria for unidirectional fiber composites", J. Appl. Mech., 47(2), 329-334. https://doi.org/10.1115/1.3153664.
  25. Hashin, Z. and Rotem, A. (1973), "A fatigue failure criterion for fiber reinforced materials. Journal of composite materials", J. Compos. Mater., 7(4), 448-464. https://doi.org/10.1177/002199837300700404.
  26. Hassanein, M. (2010), "Numerical modelling of concrete-filled lean duplex slender stainless steel tubular stub columns", J. Constr. Steel Res., 66(8-9), 1057-1068. https://doi.org/10.1016/j.jcsr.2010.03.008.
  27. Hassanein, M., Kharoob, O. and Liang, Q. (2013), "Behaviour of circular concrete-filled lean duplex stainless steel-carbon steel tubular short columns", Eng. Struct., 56, 83-94. https://doi.org/10.1016/j.engstruct.2013.04.016.
  28. Hu, B., Wang, J.G. and Li, G.Q. (2011), "Numerical simulation and strength models of FRP-wrapped reinforced concrete columns under eccentric loading", Constr. Build. Mater., 25(5), 2751-2763. https://doi.org/10.1016/j.conbuildmat.2010.12.036.
  29. Hu, H.T., Huang, C.S., Wu, M.H. and Wu, Y.M. (2003), "Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect", J. Struct. Eng., 129(10), 1322-1329. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:10(1322).
  30. Huang, L., Zhang, S.S., Yu, T. and Wang, Z.Y. (2018), "Compressive behaviour of large rupture strain FRP-confined concrete-encased steel columns", Constr. Build. Mater., 183, 513-522. https://doi.org/10.1016/j.conbuildmat.2018.06.074.
  31. Jian, C., Lim, M.K. and Ozbakkaloglu, T. (2016), "Evaluation of ultimate conditions of FRP-confined concrete columns using genetic programming", Comput. Struct., 162, 28-37. https://doi.org/10.1016/j.compstruc.2015.09.005.
  32. Jiang, T. and Teng, J. (2007), "Analysis-oriented stress-strain models for FRP-confined concrete", Eng. Struct., 29(11), 2968-2986. https://doi.org/10.1016/j.engstruct.2007.01.010.
  33. Kachlakev, D.I., Miller, T.H., Potisuk, T., Yim, S.C. and Chansawat, K. (2001), "Finite element modeling of reinforced concrete structures strengthened with FRP laminates", Oregon. Dept. of Transportation. Research Group.
  34. Karabinis, A. and Rousakis, T. (2002), "Concrete confined by FRP material: a plasticity approach", Eng. Struct., 24(7), 923-932. https://doi.org/10.1016/s0141-0296(02)00011-1.
  35. Karbhari, V.M. and Gao, Y. (1997), "Composite jacketed concrete under uniaxial compression-Verification of simple design equations", J. Mater. Civil Eng., 9(4), 185-193. https://doi.org/10.1061/(ASCE)0899-1561(1997)9:4(185).
  36. Kashtalyan, M. and Soutis, C. (2000), "The effect of delaminations induced by transverse cracks and splits on stiffness properties of composite laminates", Compos. Part A: Appl. Sci. Manuf., 31(2), 107-119. https://doi.org/10.1016/S1359-835X(99)00066-4.
  37. Kashtalyan, M. and Soutis, C. (2002), "Analysis of local delaminations in composite laminates with angle-ply matrix cracks", Int. J. Solid. Struct., 39(6), 1515-1537. https://doi.org/10.1016/S0020-7683(02)00007-0.
  38. Lam, D. and Gardner, L. (2008), "Structural design of stainless steel concrete filled columns", J. Constr. Steel Res., 64(11), 1275-1282. https://doi.org/10.1016/j.jcsr.2008.04.012.
  39. Lam, L. and Teng, J. (2003), "Design-oriented stress-strain model for FRP-confined concrete", Constr. Build. Mater., 17(6-7), 471-489. https://doi.org/10.1016/S0950-0618(03)00045-X.
  40. Lee, J. and Fenves, G.L. (1998), "A plastic-damage concrete model for earthquake analysis of dams", Earthq. Eng. Struct. Dyn., 27(9), 937-956. https://doi.org/10.1002/(sici)1096-9845(199809)27:9<937::aid-eqe764>3.0.co;2-5.
  41. Li, L.J., Zeng, L., Xu, S.D. and Guo, Y.C. (2017), "Experimental study on axial compressive behavior of hybrid FRP confined concrete columns", Comput. Concrete, 19(4), 395-404. https://doi.org/10.12989/cac.2017.19.4.395.
  42. Liang, Q.Q. and Fragomeni, S. (2009), "Nonlinear analysis of circular concrete-filled steel tubular short columns under axial loading", J. Constr. Steel Res., 65(12), 2186-2196. https://doi.org/10.1016/j.jcsr.2009.06.015.
  43. Liew, J.R. and Xiong, D. (2009), "Effect of preload on the axial capacity of concrete-filled composite columns", J. Constr. Steel Res., 65(3), 709-722. https://doi.org/10.1016/j.jcsr.2008.03.023.
  44. Lin, H.J., Liao, C.I. and Yang, C. (2006), "A numerical analysis of compressive strength of rectangular concrete columns confined by FRP", Comput. Concrete, 3(4), 235-248. https://doi.org/10.12989/cac.2006.3.4.235.
  45. Liu, J. and Zhou, X. (2010), "Behavior and strength of tubed RC stub columns under axial compression", J. Constr. Steel Res., 66(1), 28-36. https://doi.org/10.1016/j.jcsr.2009.08.006.
  46. Liu, J.P., Xu, T.X., Wang, Y.H. and Guo, Y. (2018), "Axial behaviour of circular steel tubed concrete stub columns confined by CFRP materials", Constr. Build. Mater., 168, 221-231. https://doi.org/10.1016/j.conbuildmat.2018.02.131.
  47. Majewski, S. (2003), "The mechanics of structural concrete in terms of elasto-plasticity", Publishing House of Silesian University of Technology, Gliwice.
  48. Mander, J.B., Priestley, M.J. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
  49. Matthews, F.L., Davies, G.A.O., Hitchings, D. and Soutis, C. (2000), Finite Element Modelling of Composite Materials and Structures, Elsevier.
  50. Matthys, S., Toutanji, H., Audenaert, K. and Taerwe, L. (2005), "Axial load behavior of large-scale columns confined with fiber- reinforced polymer composites", ACI Struct. J., 102(2), 258.
  51. Mazzucco, G., Salomoni, V.A., Majorana, C.E., Pellegrino, C. and Ceccato, C. (2016), "Numerical investigation of concrete columns with external FRP jackets subjected to axial loads", Constr. Build. Mater., 111, 590-599. https://doi.org/10.1016/j.conbuildmat.2016.02.050.
  52. Miyauchi, K. (1997), "Estimation of strengthening effects with carbon fiber sheet for concrete column", Proceedings of the 3rd International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures, Japan Concrete Institute.
  53. Najafgholipour, M.A., Dehghan, S.M., Dooshabi, A. and Niroomandi, A. (2017), "Finite element analysis of reinforced concrete beam-column connections with governing joint shear failure mode", Lat. Am. J. Solid. Struct., 14(7), 1200-1225. https://doi.org/10.1590/1679-78253682.
  54. Nayal, R. and Rasheed, H.A. (2006), "Tension stiffening model for concrete beams reinforced with steel and FRP bars", J. Mater. Civil Eng., 18(6), 831-841. https://doi.org/10.1061/(asce)0899-1561(2006)18:6(831).
  55. Newman, K. and Newman, J. (1971), "Failure theories and design criteria for plain concrete", Struct. Solid Mech. Eng. Des., 963-995.
  56. O'Shea, M.D. and Bridge, R.Q. (2000), "Design of circular thin-walled concrete filled steel tubes", J. Struct. Eng., 126(11), 1295-1303. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1295).
  57. Patel, V.I., Hassanein, M.F., Thai, H.T., Al Abadi, H. and Paton-Cole, V. (2017), "Behaviour of axially loaded circular concrete-filled bimetallic stainless-carbon steel tubular short columns", Eng. Struct., 147, 583-597. https://doi.org/10.1016/j.engstruct.2017.05.064.
  58. Patel, V.I., Liang, Q.Q. and Hadi, M.N. (2014), "Nonlinear analysis of axially loaded circular concrete-filled stainless steel tubular short columns", J. Constr. Steel Res., 101, 9-18. https://doi.org/10.1016/j.jcsr.2014.04.036.
  59. Perea, T., Leon, R.T., Hajjar, J.F. and Denavit, M.D. (2014), "Full-scale tests of slender concrete-filled tubes: Interaction behavior", J. Struct. Eng., 140(9), 04014054. https://doi.org/10.1061/(asce)st.1943-541x.0000949.
  60. Piscesa, B., Attard, M.M. and Samani, A.K. (2017), "Three-dimensional finite element analysis of circular reinforced concrete column confined with FRP using plasticity model", J Procedia Eng., 171, 847-856. https://doi.org/10.1016/j.proeng.2017.01.377
  61. Rasmussen, K.J., Burns, T., Bezkorovainy, P. and Bambach, M.R. (2003), "Numerical modelling of stainless steel plates in compression", J. Constr. Steel Res., 59(11), 1345-1362. https://doi.org/10.1016/s0143-974x(03)00086-5.
  62. Raza, A. and Ahmad, A. (2019), "Numerical investigation of load-carrying capacity of GFRP-reinforced rectangular concrete members using CDP model in ABAQUS", Adv. Civil Eng., 2019, Article ID 1745341, 21. https://doi.org/10.1155/2019/1745341.
  63. Raza, A. and Khan, Q.U.Z. (2020a), "Experimental and numerical behavior of hybrid-fiber-reinforced concrete compression members under concentric loading", SN Appl. Sci., 2(4), 1-19. https://doi.org/10.1007/s42452-020-2461-5.
  64. Raza, A., Shah, SAR., Khan, AR., Aslam, MA., Khan, TA., Arshad, K., Hussan, S., Sultan, A., Shahzadi, G. and Waseem, M. (2020b), "Sustainable FRP-confined symmetric concrete structures: An application experimental and numerical validation process for reference data", Appl. Sci., 10(1), 333. https://doi.org/10.3390/app10010333.
  65. Richart, F.E., Brandtzaeg, A. and Brown, R.L. (1928), "A study of the failure of concrete under combined compressive stresses", College of Engineering, University of Illinois at Urbana Champaign.
  66. Richart, F.E., Brandtzæg, A. and Brown, R.L. (1929), "Failure of plain and spirally reinforced concrete in compression", College of Engineering, University of Illinois at Urbana Champaign.
  67. Rousakis, T.C., Karabinis, A.I., Kiousis, P.D. and Tepfers, R. (2008), "Analytical modelling of plastic behaviour of uniformly FRP confined concrete members", Compos. Part B: Eng., 39(7-8), 1104-1113. https://doi.org/10.1016/j.compositesb.2008.05.001.
  68. Saafi, M., Toutanji, H.A. and Li, Z. (1999), "Behavior of concrete columns confined with fiber reinforced polymer tubes", ACI Mater. J., 96(4), 500-509. https://doi.org/10.14359/652.
  69. Sadeghian, P. and Fam, A. (2015), "Improved design-oriented confinement models for FRP-wrapped concrete cylinders based on statistical analyses", Eng. Struct., 87, 162-182. https://doi.org/10.1016/j.engstruct.2015.01.024.
  70. Samaan, M., Mirmiran, A. and Shahawy, M. (1998), "Model of concrete confined by fiber composites", J. Struct. Eng., 124(9), 1025-1031. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:9(1025).
  71. Sharif, A.M., Al-Mekhlafi, G.M. and Al-Osta, M.A. (2019), "Structural performance of CFRP-strengthened concrete-filled stainless steel tubular short columns", Eng. Struct., 183, 94-109. https://doi.org/10.1016/j.engstruct.2019.01.011.
  72. Shi, Y., Swait, T. and Soutis, C. (2012), "Modelling damage evolution in composite laminates subjected to low velocity impact", J. Compos. Struct., 94(9), 2902-2913. https://doi.org/10.1016/j.compstruct.2012.03.039.
  73. Tam, V.W., Wang, Z.B. and Tao, Z. (2014), "Behaviour of recycled aggregate concrete filled stainless steel stub columns", Mater. Struct., 47(1-2), 293-310. https://doi.org/10.1617/s11527-013-0061-1.
  74. Tao, Z., Uy, B., Liao, F.Y. and Han, L.H. (2011), "Nonlinear analysis of concrete-filled square stainless steel stub columns under axial compression", J. Constr. Steel Res., 67(11), 1719-1732. https://doi.org/10.1016/j.jcsr.2011.04.012.
  75. Tao, Z., Wang, Z.B. and Yu, Q. (2013), "Finite element modelling of concrete-filled steel stub columns under axial compression", J. Constr. Steel Res., 89, 121-131. https://doi.org/10.1016/j.jcsr.2013.07.001.
  76. Teng, J.G., Jiang, T., Lam, L. and Luo, Y.Z. (2009), "Refinement of a design-oriented stress-strain model for FRP-confined concrete", J. Compos. Constr., 13(4), 269-278. https://doi.org/10.1061/(asce)cc.1943-5614.0000012.
  77. Teng, J.G., Xiao, Q.G., Yu, T. and Lam, L. (2015), "Three-dimensional finite element analysis of reinforced concrete columns with FRP and/or steel confinement", Eng. Struct., 97, 15-28. https://doi.org/10.1016/j.engstruct.2015.03.030.
  78. Tita, V., De Carvalho, J. and Vandepitte, D. (2008), "Failure analysis of low velocity impact on thin composite laminates: Experimental and numerical approaches", Compos. Struct., 83(4), 413-428. https://doi.org/10.1016/j.compstruct.2007.06.003.
  79. Toutanji, H.A. (1999), "Stress-strain characteristics of concrete columns externally confined with advanced fiber composite sheets", ACI Mater. J., 96(3), 397-404.
  80. Van Den Einde, L., Zhao, L. and Seible, F. (2003), "Use of FRP composites in civil structural applications", Constr. Build. Mater., 17(6-7), 389-403. https://doi.org/10.1016/S0950-0618(03)00040-0.
  81. Voyiadjis, G.Z. and Taqieddin, Z.N. (2009), "Elastic plastic and damage model for concrete materials: Part I-theoretical formulation", Int. J. Struct. Change. Solid., 1(1), 31-59.
  82. Wahalathantri, B.L., Thambiratnam, D.P., Chan, T.H.T. and Fawzia, S. (2011), "A material model for flexural crack simulation in reinforced concrete elements using ABAQUS", Proceedings of the First International Conference on Engineering, Designing and Developing the Built Environment for Sustainable Wellbeing, Queensland University of Technology.
  83. Wu, J.Y., Li, J. and Faria, R. (2006), "An energy release rate-based plastic-damage model for concrete", Int. J. Solid. Struct., 43(3-4), 583-612. https://doi.org/10.1016/j.ijsolstr.2005.05.038.
  84. Xiao, Y. (2004), "Applications of FRP composites in concrete columns", Adv. Struct. Eng., 7(4), 335-343. https://doi.org/10.1260/1369433041653552.
  85. Youssf, O., ElGawady, M.A., Mills, J.E. and Ma, X. (2014), "Finite element modelling and dilation of FRP-confined concrete columns", Eng. Struct., 79, 70-85. https://doi.org/10.1016/j.engstruct.2014.07.045.
  86. Yu, T., Teng, J.G., Wong, Y.L. and Dong, S.L. (2010), "Finite element modeling of confined concrete-II: Plastic-damage model", Eng. Struct., 32(3), 680-691. https://doi.org/10.1016/j.engstruct.2009.11.013.
  87. Yu, T.T.J.G., Teng, J.G., Wong, Y.L. and Dong, S.L. (2010), "Finite element modeling of confined concrete-I: Drucker-Prager type plasticity model", Eng. Struct., 32(3), 665-679. https://doi.org/10.1016/j.engstruct.2009.11.014.
  88. Zhao, O., Afshan, S. and Gardner, L. (2017), "Structural response and continuous strength method design of slender stainless steel cross-sections", Eng. Struct., 140, 14-25. https://doi.org/10.1016/j.engstruct.2017.02.044.