DOI QR코드

DOI QR Code

Effects of elastic medium on buckling of microtubules due to bending and torsion

  • Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Afsar, Muhammad A. (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Safeer, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Ahmad, Manzoor (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Naeem, Muhammad N. (Department of Mathematics, Govt. College University Faisalabad) ;
  • Badshah, Noor (Department of Basic Science, University of Engineering and Technology) ;
  • Khan, Arshad (Institute of Computer Science and Information Technology, The University of Agriculture) ;
  • Tounsi, Abdelouahed (Materials and Hydrology Laboratory, Algeria Faculty of Technology Civil Engineering Department, University of Sidi Bel Abbes)
  • 투고 : 2020.02.11
  • 심사 : 2020.04.30
  • 발행 : 2020.05.25

초록

Microtubules buckle under bending and torsion and this property has been studied for free microtubules before using orthotropic elastic shell model. But as microtubules are embedded in other elastic filaments and it is experimentally showed that these elastic filaments affect the critical buckling moment and critical buckling torque of the microtubules. To prove that, we developed orthotropic Winkler like model and demonstrated that the critical buckling moment and critical buckling torque of the microtubules are orders of higher magnitude than those found for free microtubules. Our results show that Critical buckling moment is about 6.04 nNnm for which the corresponding curvature is about θ = 1.33 rad /㎛ for embedded MTs, and critical buckling torque is 0.9 nNnm for the angle of 1.33 rad/㎛. Our results well proved the experimental findings.

키워드

과제정보

The author(s) received no financial support for the research, authorship, and/or publication of this article.

참고문헌

  1. Akgoz, B. and Civalek, O. (2011), "Application of strain gradient elasticity theory for buckling analysis of protein microtubules", Curr. Appl. Phys., 11(5), 1133-1138. https://doi.org/10.1016/j.cap.2011.02.006.
  2. Akgoz, B. and Civalek, O. (2011), "Studied the size effect of microtubules (MTs) via modified strain gradient elasticity theory for buckling. MTs are modeled by Bernoulli-Euler beam theory. By using the variational principle, the governing equations for buckling and related boundary conditions are obtained in conjunctions with the strain gradient elasticity".
  3. Akgoz, B. and Civalek, O. (2014), "A new trigonometric beam model for buckling of strain gradient microbeams", Int. J. Mech. Sci., 81, 88-94. https://doi.org/10.1016/j.ijmecsci.2014.02.013.
  4. Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated $SiO_2$ nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., 6(6), 585. https://doi.org/10.12989/acc.2018.6.6.585.
  5. Amnieh, H.B., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by $SiO_2$ nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140.
  6. Arani, A.J. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578. http://dx.doi.org/10.12989/cac.2016.17.5.567.
  7. Asghar, S., Hussain, M. and Naeem, M. (2019b), "Non-local effect on the vibration analysis of double walled carbon nanotubes based on Donnell shell theory", J.: Physica E: Lowdimens. Syst. Nanostruct., 116, 113726. https://doi.org/10.1016/j.physe.2019.113726
  8. Ayat, H., Kellouche, Y., Ghrici, M. and Boukhatem, B. (2018), "Compressive strength prediction of limestone filler concrete using artificial neural networks", Adv. Comput. Des., 3(3), 289-302. https://doi.org/10.12989/acd.2018.3.3.289.
  9. Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699. https://doi.org/10.12989/scs.2019.33.5.699.
  10. Bayley, P.M., CharlWood, P.A., Clark, D.C. and Martin, S.R. (1982), "Oligomeric species in glycerol-cycled Bovine-Brain microtubule protein: Analytical ultracentrifugal characterisation", Eur. J. Biochem., 121(3), 579-585. https://doi.org/10.1111/j.1432-1033.
  11. Behera, S. and Kumari, P. (2018), "Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory", Adv. Comput. Des., 3(3), 213-232. https://doi.org/10.12989/acd.2018.3.3.213.
  12. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., ... and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443. https://doi.org/10.12989/anr.2019.7.6.443.
  13. Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T. (2019), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., 6(4), 339. https://doi.org/10.12989/anr.2018.6.4.339.
  14. Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053.
  15. Bulinski, J.C. and Borisy, G.G. (1980), "Immunofluorescence localization of HeLa cell microtubule-associated proteins on microtubules in vitro and in vivo", J. Cell. Biol., 87(3), 792-801. https://doi.org/10.1083/jcb.87.3.792.
  16. Chen, A.C.H. and Chen, S.K. (2000), "Brand dilution effect of extension failure-a Taiwan study", J. Prod. Brand Manage. https://doi.org/10.1108/10610420010344031.
  17. de Pablo, P.J., Schaap, I.A., MacKintosh, F.C. and Schmidt, C.F. (2003), "Deformation and collapse of microtubules on the nanometer scale", Phys. Rev. Lett., 91(9), 098101. https://doi.org/10.1103/PhysRevLett.91.098101.
  18. Demir, C., Mercan, K. and Civalek, O. (2016), "Determination of critical buckling loads of isotropic, FGM and laminated truncated conical panel", Compos. Part B: Eng., 94, 1-10. https://doi.org/10.1016/j.compositesb.2016.03.031.
  19. Eslami, M. and Javaheri, R. (1999), "Buckling of composite cylindrical shells under mechanical and thermal loads", J. Therm. Stress., 22(6), 527-545. https://doi.org/10.1080/014957399280733.
  20. Fatahi-Vajari. A., Azimzadeh, Z., Hussain. M., (2019), "Nonlinear coupled axial-torsional vibration of single-walled carbon nanotubes using Galerkin and Homotopy perturbation method", Micro Nano Lett., 14(14), 1366-1371. https://doi.org/10.1049/mnl.2019.0203.
  21. Felgner, H., Frank, R. and Schliwa, M. (1996), "Flexural rigidity of microtubules measured with the use of optical tweezers", J. Cell Sci., 109(2), 509-516. https://doi.org/10.1529/biophysj.104.055483.
  22. Felgner, P., Barenholz, Y., Behr, J., Cheng, S., Cullis, P., Huang, L., . . . Thierry, A. (1997), "Nomenclature for synthetic gene delivery systems", Human Gene Therapy, 8(5), 511-512. https://doi.org/10.1089/hum.1997.8.5-511.
  23. Flugge, W. (2013), Stresses in Ahells, Springer Science & Business Media.
  24. Grishchuk, E.L., Molodtsov, M.I., Ataullakhanov, F.I. and McIntosh, J.R. (2005), "Force production by disassembling microtubules", Nature, 438(7066), 384-388. https://doi.org/10.1021/bi00480a014
  25. Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2018a), "Smart control and vibration of viscoelastic actuator-multiphase nanocomposite conical shells-sensor considering hygrothermal load based on layerwise theory", Aerosp. Sci. Technol., 78, 260-270. https://doi.org/10.1016/j.ast.2018.04.030.
  26. Hajmohammad, M.H., Kolahchi, R., Zarei, M.S. and Maleki, M. (2018c), "Earthquake induced dynamic deflection of submerged viscoelastic cylindrical shell reinforced by agglomerated CNTs considering thermal and moisture effects", Compos. Struct., 187, 498-508. https://doi.org/10.1016/j.compstruct.2017.12.004.
  27. Hajmohammad, M.H., Kolahchi, R., Zarei, M.S. and Nouri, A.H. (2019), "Dynamic response of auxetic honeycomb plates integrated with agglomerated CNT-reinforced face sheets subjected to blast load based on visco-sinusoidal theory", Int. J. Mech. Sci., 153, 391-401. https://doi.org/10.1016/j.ijmecsci.2019.02.008.
  28. Hajmohammad, M.H., Maleki, M. and Kolahchi, R. (2018b), "Seismic response of underwater concrete pipes conveying fluid covered with nano-fiber reinforced polymer layer", Soil Dyn. Earthq. Eng., 110, 18-27. https://doi.org/10.1016/j.soildyn.2018.04.002.
  29. Hosseini, H. and Kolahchi, R. (2018), "Seismic response of functionally graded-carbon nanotubes-reinforced submerged viscoelastic cylindrical shell in hygrothermal environment", Physica E: Lowdimens. Syst. Nanostruct., 102, 101-109. https://doi.org/10.1016/j.physe.2018.04.037.
  30. Howard, D. (2001), Coloring the Nation: Race and Ethnicity in the Dominican Republic, Signal Books.
  31. Hussain, M. and Naeem, M. (2019a), "Vibration characteristics of single-walled carbon nanotubes based on non-local elasticity theory using wave propagation approach (WPA) including chirality".
  32. Hussain, M. and Naeem, M. (2019d), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.
  33. Hussain, M. and Naeem, M., (2018a), "Vibration of single-walled carbon nanotubes based on Donnell shell theory using wave propagation approach", Chapter, Intechopen, Novel Nanomaterials - Synthesis and Applications, ISBN 978-953-51-5896-7, 10.5772 /intechopen.73503.
  34. Hussain, M. and Naeem, M.N. (2017), "Vibration analysis of single-walled carbon nanotubes using wave propagation approach", Mech. Sci., 8(1), 155-164. https://doi.org/10.5194/ms-8-155-2017.
  35. Hussain, M. and Naeem, M.N. (2018b), "Effect of various edge conditions on free vibration characteristics of rectangular plates", Chapter, Intechopen, Advance Testing and Engineering, ISBN 978-953-51-6706-8, Intechopen.
  36. Hussain, M. and Naeem, M.N. (2019b), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos. Part B. Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144.
  37. Hussain, M. and Naeem, M.N. (2019c), "Vibration characteristics of zigzag and chiral FGM rotating carbon nanotubes sandwich with ring supports", J. Mech. Eng. Sci., Part C., 233(16), 5763-5780. https://doi.org/10.1177/0954406219855095.
  38. Hussain, M. and Naeem, M.N. (2020a), "Mass density effect on vibration of zigzag and chiral SWCNTs", Journal of Sandwich Structures and Materials.
  39. Hussain, M. and Naeem, M.N. (2020b), "Vibration characteristics of zigzag FGM single-walled carbon nanotubes based on Ritz method with ring-stiffeners", Indian Journal of Physics.
  40. Hussain, M., Naeem, M., Shahzad, A. and He, M. (2018a), "Vibration characteristics of fluid-filled functionally graded cylindrical material with ring supports", Chapter, Intechopen, Computational Fluid Dynamics, ISBN 978-953-51-5706-9, DOI:10.5772 /intechopen.72172.
  41. Hussain, M., Naeem, M.N. and Isvandzibaei, M. (2018c), "Effect of Winkler and Pasternak elastic foundation on the vibration of rotating functionally graded material cylindrical shell", Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci., 232(24), 4564-4577. https://doi.org/10.1177/0954406217753459.
  42. Hussain, M., Naeem, M.N. and Taj, M. (2019b), "Effect of length and thickness variations on the vibration of SWCNTs based on Flugge's shell model", Micro Nano Lett., 15(1), 1-6. https://doi.org/10.1049/mnl.2019.0309.
  43. Hussain, M., Naeem, M.N. and Tounsi, A. (2020a), "Simulating vibration of single-walled carbon nanotube based on Relagh-Ritz Method".
  44. Hussain, M., Naeem, M.N. and Tounsi, A. (2020b), "On mixing the Rayleigh-Ritz formulation with Hankel's function for vibration of fluid-filled Fluid-filled cylindrical shell", Advances in Computational Design.
  45. Hussain, M., Naeem, M.N. and Tounsi, A. (2020c),"Numerical Study for nonlocal vibration of orthotropic SWCNTs based on Kelvin's model", Advances in Concrete Construction,.
  46. Hussain, M., Naeem, M.N. and Tounsi, A. (2020d), "Response of orthotropic Kelvin modeling for single-walled carbon nanotubes: Frequency analysis", Advance Nano Research.
  47. Hussain, M., Naeem, M.N. and Tounsi, A. (2020f), "Theoretical impact of Kelvin's theory for vibration of double walled carbon nanotubes", Advance Nano Research.
  48. Hussain, M., Naeem, M.N., Khan, M.S. and Tounsi, A. "Computer adid approach for modeling of FG cylindrical shell sandwich with ring supports", Computers and Concrete.
  49. Hussain, M., Naeem, M.N., Sehar, A. and Tounsi, A. (2020g), "Eringen's nonlocal model sandwich with Kelvin's theory for vibration of DWCNT", Computer and Concrete.
  50. Hussain, M., Naeem, M.N., Shahzad, A., He, M. and Habib, S. (2018b), "Vibrations of rotating cylindrical shells with FGM using wave propagation approach", IMechE Part C: J. Mech. Eng. Sci., 232(23), 4342-4356. https://doi.org/10.1177/0954406218802320.
  51. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019a), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
  52. Hussain, M., Naeem., M.N., Shahzad, A. and He, M. (2017), "Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach", AIP Adv., 7(4), 045114. https://doi.org/10.1063/1.4979112.
  53. Janosi, L., Mori, H., Sekine, Y., Abragan, J., Janosi, R., Hirokawa, G. and Kaji, A. (2000), "Mutations influencing the frr gene coding for ribosome recycling factor (RRF)", J. Molec. Biol., 295(4), 815-829. https://doi.org/10.1006/jmbi.1999.3401.
  54. Jassas, M.R., Bidgoli, M.R. and Kolahchi, R. (2019), "Forced vibration analysis of concrete slabs reinforced by agglomerated $SiO_2$ nanoparticles based on numerical methods", Constr. Build. Mater., 211, 796-806. https://doi.org/10.1016/j.conbuildmat.2019.03.263.
  55. Kagimoto, H., Yasuda, Y. and Kawamura, M. (2015), "Mechanisms of ASR surface cracking in a massive concrete cylinder", Adv. Concrete Constr., 3(1), 39-54. https://doi.org/10.12989/acc.2015.3.1.039.
  56. Kagimoto, H., Yasuda, Y. and Kawamura, M. (2015), "Mechanisms of ASR surface cracking in a massive concrete cylinder", Adv. Concrete Constr., 3(1), 039. https://doi.org/10.12989/acc.2015.3.1.039.
  57. Kawaguchi, K., Ishiwata, S. and Yamashita, T. (2008), "Temperature dependence of the flexural rigidity of single microtubules", Biochem. Biophys. Res. Commun., 366(3), 637-642. https://doi.org/10.1016/j.bbrc.2007.11.162.
  58. Khelifa, Z., Hadji, L., Daouadji, T.H. and Bourada, M. (2018), "Buckling response with stretching effect of carbon nanotube-reinforced composite beams resting on elastic foundation", Struct. Eng. Mech., 67(2), 125-130. https://doi.org/10.12989/sem.2018.67.2.125.
  59. Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016.
  60. Kolahchi, R. and Bidgoli, A.M. (2016), "Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes", Appl. Math. Mech., 37(2), 265-274. https://doi.org/10.1007/s10483-018-2268-8..
  61. Kolahchi, R. and Cheraghbak, A. (2017), "Agglomeration effects on the dynamic buckling of viscoelastic microplates reinforced with SWCNTs using Bolotin method", Nonlin. Dyn., 90(1), 479-492. https://doi.org/10.1007/s11071-017-3676-x.
  62. Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016a), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032.
  63. Kolahchi, R., Hosseini, H., Fakhar, M.H., Taherifar, R. and Mahmoudi, M. (2019), "A numerical method for magneto-hygro-thermal postbuckling analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Comput. Math. Appl., 78(6), 2018-2034. https://doi.org/10.1016/j.camwa.2019.03.042.
  64. Kolahchi, R., Keshtegar, B. and Fakhar, M.H. (2020), "Optimization of dynamic buckling for sandwich nanocomposite plates with sensor and actuator layer based on sinusoidal-visco-piezoelasticity theories using Grey Wolf algorithm", J. Sandw. Struct. Mater., 22(1), 3-27. https://doi.org/10.1177/1099636217731071.
  65. Kolahchi, R., Safari, M. and Esmailpour, M. (2016b), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023.
  66. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017), "Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039.
  67. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Oskouei, A.N. (2017), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin Wall. Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016.
  68. Li, T. (2008), "A mechanics model of microtubule buckling in living cells", J. Biomech., 41(8), 1722-1729. https://doi.org/10.1016/j.jbiomech.2008.03.003.
  69. Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889.
  70. Mercan, K. and Civalek, O. (2016), "DSC method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elastic matrix", Compos. Struct., 143, 300-309. https://doi.org/10.1016/j.compstruct.2016.02.040.
  71. Mercan, K. and Civalek, O. (2016), "Presented a simple mechanical model for buckling behavior of boron nitride nanotube (BNNT) surrounded by an elastic matrix. A nonlocal-continuum model is proposed for BNNT using the Euler-Bernoulli beam theory on an elastic matrix. The elastic matrix surrounded of the BNNT is modeled via linear spring model using the Winkler and Pasternak elastic foundation models".
  72. Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stress-strain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., 5(5), 539. https://doi.org/10.12989/acc.2017.5.5.539.
  73. Mickey, B. and Howard, J. (1995), "Rigidity of microtubules is increased by stabilizing agents", J. Cell Biol., 130(4), 909-917. https://doi.org/10.1083/jcb.130.4.909.
  74. Mohsen, M. and Eyvazian A.(2020), "Post-buckling analysis of Mindlin Cut out-plate reinforced by FG-CNTs", Steel Compos. Struct., 34(2), 289. https://doi.org/10.12989/scs.2020.34.2.289.
  75. Motezaker, M. and Eyvazian, A. (2020), "Buckling load optimization of beam reinforced by nanoparticles", Struct. Eng. Mech., 73(5), 481-486. https://doi.org/10.12989/sem.2020.73.5.481.
  76. Motezaker, M. and Kolahchi, R. (2017a), "Seismic response of concrete columns with nanofiber reinforced polymer layer", Comput. Concrete, 20(3), 361-368. https://doi.org/10.12989/cac.2017.20.3.361.
  77. Motezaker, M. and Kolahchi, R. (2017b), "Seismic response of $SiO_2$ nanoparticles-reinforced concrete pipes based on DQ and newmark methods", Comput. Concrete, 19(6), 745-753. https://doi.org/10.12989/cac.2017.19.6.745.
  78. Motezaker, M., Jamali, M. and Kolahchi, R. (2020), "Application of differential cubature method for nonlocal vibration, buckling and bending response of annular nanoplates integrated by piezoelectric layers based on surface-higher order nonlocal-piezoelasticity theory", J. Comput. Appl. Math., 369, 112625. https://doi.org/10.1016/j.cam.2019.112625.
  79. Narwariya, M., Choudhury, A. and Sharma, A.K. (2018), "Harmonic analysis of moderately thick symmetric cross-ply laminated composite plate using FEM", Adv. Comput. Des., 3(2), 113-132. https://doi.org/10.12989/acd.2018.3.2.113.
  80. Nejadi, M.M. and Mohammadimehr, M. (2020), "Buckling analysis of nano composite sandwich Euler-Bernoulli beam considering porosity distribution on elastic foundation using DQM", Adv. Nano Res., 8(1), 59. https://doi.org/10.12989/anr.2020.8.1.059.
  81. Odde, D.J. and Renn, M.J. (1999), "Laser-guided direct writing for applications in biotechnology", Trend. Biotechnol., 17(10), 385-389. https://doi.org/10.1016/S0167-7799(99)01355-4.
  82. Odde, D.J., Ma, L., Briggs, A.H., DeMarco, A. and Kirschner, M.W. (1999), "Microtubule bending and breaking in living fibroblast cells", J. Cell Sci., 112(19), 3283-3288. https://doi.org/10.1126/science.aai8764
  83. Rezaiee-Pajand, M., Masoodi, A.R. and Mokhtari, M. (2018), "Static analysis of functionally graded non-prismatic sandwich beams", Adv. Comput. Des., 3(2), 165-190. https://doi.org/10.12989/acd.2018.3.2.165.
  84. Ru, C. (2000), "Effective bending stiffness of carbon nanotubes", Phys. Rev. B, 62(15), 9973. https://doi.org/10.1103/PhysRevB.62.9973.
  85. Sadoughifar, A., Farhatnia, F., Izadinia, M. and Talaeetaba, S.B. (2020), "Size-dependent buckling behaviour of FG annular/circular thick nanoplates with porosities resting on Kerr foundation based on new hyperbolic shear deformation theory", Struct. Eng. Mech., 73(3), 225. https://doi.org/10.12989/sem.2020.73.3.225.
  86. Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805. https://doi.org/10.12989/scs.2019.33.6.805.
  87. Samadvand, H. and Dehestani, M. (2020), "A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints", Adv. Concrete Constr., 9(1), 43-54. https://doi.org/10.12989/acc.2020.9.1.043.
  88. Schliwa, M. and Woehlke, G. (2003), "Molecular motors", Nature, 422(6933), 759-765. https://doi.org/10.1038/nature01601
  89. Sedighi, H.M. and Sheikhanzadeh, A.S.H.K.A.N. (2017), "Static and dynamic pull-in instability of nano-beams resting on elastic foundation based on the nonlocal elasticity theory", Chin. J. Mech. Eng., 30(2), 385-397. https://doi.org/10.1007/s10033-017-0079-3.
  90. Sehar, A., Hussain, M., Naeem, M.N. and Tounsi, A. (2020), "Prediction and assessment of nolocal natural frequencies DWCNTs: Vibration analysis", Comput. Concrete, 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133.
  91. Sharma, P., Singh, R. and Hussain, M. (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234.
  92. Sirenko, Y.M., Stroscio, M.A. and Kim, K. (1996), "Elastic vibrations of microtubules in a fluid", Phys. Rev. E, 53(1), 1003. https://doi.org/10.1103/PhysRevE.53.1003
  93. Sofiyev, A.H., Alizada, A.N., Akin, O., Valiyev, A., Avcar, M. and Adiguzel, S. (2012), "On the stability of FGM shells subjected to combined loads with different edge conditions and resting on elastic foundations", Acta Mechanica, 223(1), 189-204. https://doi.org/10.1007/s00707-011-0548-1.
  94. Sofiyev, A.H., Deniz, A., Avcar, M., Ozyigit, P. and Omurtag, M.H. (2013), "Effects of the non-homogeneity and elastic medium on the critical torsional load of the orthotropic cylindrical shell", Acta Physica Polonica A, 123(4), 728-730. https://doi.org/10.12693/APhysPolA.123.728.
  95. Sofiyev, A.H., Schnack, E., Deniz, A., Zerin, Z. and Avcar, M. (2012), "Stability analysis of FGM layered shells in the surrounding medium", Acta Physica Polonica A, 121(1), 162-164. https://doi.org/10.12693/APhysPolA.121.162
  96. Taj, M. and Zhang, J. (2011), "Buckling of embedded microtubules in elastic medium", Appl. Math. Mech., 32(3), 293-300. https://doi.org/10.1007/s10483-011-1415-x.
  97. Taj, M., Safeer, M., Hussain, M., Naeem, M.N., Ahmad, M., Abbas, K., Khan, A.Q. and Tounsi, A. (2020b), "A effect of external force on cytoskeleton components in viscoelastic media", Comput. Concrete.
  98. Taj, M., Safeer, M., Hussain, M., Naeem, M.N., Majeed, A., Ahmad, M., Khan, H.U. and Tounsi, A. (2020a), "Non-local orthotropic elastic shell model for vibration analysis of protein microtubules", Comput. Concrete, 25(3), 245-253. https://doi.org/10.12989/cac.2020.25.3.245.
  99. Varga, B., Barabas, O., Kovari, J., Toth, J., Hunyadi-Gulyas, E., Klement, E., ... & Vertessy, B.G. (2007), "Active site closure facilitates juxtaposition of reactant atoms for initiation of catalysis by human dUTPase", FEBS Lett., 581(24), 4783-4788. https://doi.org/10.3390/biom9060221.
  100. Ventsel, E. and Krauthammer, T. (2004), Thin Plates and Shells: Theory, Analysis, and Applications, Marcel Dekker, New York.
  101. Waterman-Storer, C.M. and Salmon, E. (1997), "Actomyosin-based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling", J. Cell Biol., 139(2), 417-434. https://doi.org/10.1083/jcb.139.2.417.
  102. Woody, R., Roberts, G., Clark, D. and Bayley, P. (1982), "1H NMR evidence for flexibility in microtubule-associated proteins and microtubule protein oligomers", FEBS Lett., 141(2), 181-184. https://doi.org/10.1111/j.1432-1033.1977.tb11726.x
  103. Yi, L., Chang, T. and Ru, C. (2008), "Buckling of microtubules under bending and torsion", J. Appl. Phys., 103(10), 103516. https://doi.org/10.1063/1.2400096.
  104. Zamanian, M., Kolahchi, R. and Bidgoli, M.R. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with $SiO_2$ nano-particles", Wind Struct., 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043.
  105. Zarei, M.S., Kolahchi, R., Hajmohammad, M.H. and Maleki, M. (2017), "Seismic response of underwater fluid-conveying concrete pipes reinforced with $SiO_2$ nanoparticles and fiber reinforced polymer (FRP) layer", Soil Dyn. Earthq. Eng., 103, 76-85. https://doi.org/10.1016/j.soildyn.2017.09.009.
  106. Zheng, Q., Rosenfeld, R., Vajda, S. and Delisi, C. (1993), "Determining protein loop conformation using scaling-relaxation techniques", Prot. Sci., 2(8), 1242-1248. https://doi.org/10.1002/pro.5560020806.