DOI QR코드

DOI QR Code

Application of various types of recycled waste materials in concrete constructions

  • Hosseini, Seyed Azim (Department of Civil Engineering, South Tehran Branch, Islamic Azad University)
  • Received : 2019.12.10
  • Accepted : 2020.04.30
  • Published : 2020.05.25

Abstract

Studies have proved that the mechanical properties of concrete, suddenly is dropped off with employing waste materials as replacements. The effectiveness of fibre addition on the structural stability of concrete has been indicated in recent investigations. There are different waste aggregates and fibres as plastic, rubber tire, coconut, and other natural wastes, which have been evaluated throughout the last decades. The fibres incorporation has a substantial effect on the properties of concrete mix subjected to different loading scenarios. This paper has reviewed different types of wastes and the effect of typical fibres including Poly Ethylene Terephthalate (PET), rubber tire, and waste glass. Furthermore, waste plastic and waste rubber has been especially studied in this review. Although concretes containing PET fibre revealed a reduction in compressive strength at low fibre fractions, using PET is resulted to micro-cracking decrement and increasing flexibility and flexural strength. Finally, according to the reviews, the conventional waste fibres are well-suited to mitigated time-induced damages of concrete and waste fibres and aggregates could be a reliable replacement for concrete.

Keywords

References

  1. Ahmadinia, E., Zargar, M., Karim, M.R., Abdelaziz, M. and Shafigh, P. (2011), "Using waste plastic bottles as additive for stone mastic asphalt", Mater. Des., 32(10), 4844-4849. https://doi.org/10.1016/j.matdes.2011.06.016.
  2. Ahmed, A., Ugai, K. and Kamei, T. (2011), "Investigation of recycled gypsum in conjunction with waste plastic trays for ground improvement", Constr. Build. Mater., 25(1), 208-217. https://doi.org/10.1016/j.conbuildmat.2010.06.036.
  3. Akcaozoglu, S., Atis, C.D. and Akcaozoglu, K. (2010), "An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete", Waste Manage., 30(2), 285-290. https://doi.org/10.1016/j.wasman.2009.09.033.
  4. Al-Hadithi, A.I. and Hilal, N.N. (2016), "The possibility of enhancing some properties of self-compacting concrete by adding waste plastic fibers", J. Build. Eng., 8, 20-28. https://doi.org/10.1016/j.jobe.2016.06.011.
  5. Al-Tulaian, B., Al-Shannag, M. and Al-Hozaimy, A. (2016), "Recycled plastic waste fibers for reinforcing Portland cement mortar", Constr. Build. Mater., 127, 102-110. https://doi.org/10.1016/j.conbuildmat.2016.09.131.
  6. Alfahdawi, I.H., Osman, S., Hamid, R. and AL-Hadithi, A.I. (2019), "Influence of PET wastes on the environment and high strength concrete properties exposed to high temperatures", Constr. Build. Mater., 225, 358-370. https://doi.org/10.1016/j.conbuildmat.2019.07.214.
  7. Aliabdo, A.A., Elmoaty, A.E.M.A. and Fawzy, A.M. (2018), "Experimental investigation on permeability indices and strength of modified pervious concrete with recycled concrete aggregate", Constr. Build. Mater., 193, 105-127. https://doi.org/10.1016/j.conbuildmat.2018.10.182.
  8. Aoudia, K., Azem, S., Hocine, N.A., Gratton, M., Pettarin, V. and Seghar, S. (2017), "Recycling of waste tire rubber: Microwave devulcanization and incorporation in a thermoset resin", Waste Manage., 60, 471-481. https://doi.org/10.1016/j.wasman.2016.10.051.
  9. Arabnejad Khanouki, M.M., Ramli Sulong, N.H. and Shariati, M. (2010), "Investigation of seismic behaviour of composite structures with concrete filled square steel tubular (CFSST) column by push-over and time-history analyses", Proceedings of the 4th International Conference on Steel & Composite Structures, 21-23.
  10. Arabnejad Khanouki, M.M., Ramli Sulong, N.H. and Shariati, M. (2011), "Behavior of through beam connections composed of CFSST columns and steel beams by finite element studying", Adv. Mater. Res., 168, 2329-2333. http://dx.doi.org/10.4028/www.scientific.net/AMR.168-170.2329.
  11. Arabnejad Khanouki, M.M., Ramli Sulong, N.H., Shariati, M. and Tahir, M.M. (2016), "Investigation of through beam connection to concrete filled circular steel tube (CFCST) column", J. Constr. Steel Res., 121, 144-162. https://doi.org/10.1016/j.jcsr.2016.01.002.
  12. Asokan, P., Osmani, M. and Price, A.D. (2009), "Assessing the recycling potential of glass fibre reinforced plastic waste in concrete and cement composites", J. Clean. Prod., 17(9), 821-829. https://doi.org/10.1016/j.jclepro.2008.12.004.
  13. Asokan, P., Osmani, M. and Price, A.D. (2010), "Improvement of the mechanical properties of glass fibre reinforced plastic waste powder filled concrete", Constr. Build. Mater., 24(4), 448-460. https://doi.org/10.1016/j.conbuildmat.2009.10.017.
  14. Boudaghpour, S. and Ebrahimi, M. (2017), "A study based on the use of textiles from worn tires in manufacturing FRP composites and decreasing adverse environmental effects", IUST ICI The 2 nd International Conference on Composites: Characterization, Fabrication and Application (CCFA-2).
  15. Bui, N.K., Satomi, T. and Takahashi, H. (2018), "Recycling woven plastic sack waste and PET bottle waste as fiber in recycled aggregate concrete: An experimental study", Waste Manage., 78, 79-93. https://doi.org/10.1016/j.wasman.2018.05.035.
  16. Daie, M., Jalali, A., Suhatril, M., Shariati, M., Arabnejad Khanouki, M.M., Shariati, A. and Kazemi-Arbat, P. (2011), "A new finite element investigation on pre-bent steel strips as damper for vibration control", Int. J. Phys. Sci., 6(36), 8044-8050. https://doi.org/10.5897/ijps11.1585.
  17. de Brito, J. and Agrela, F. (2018), New Trends in Eco-efficient and Recycled Concrete, Woodhead Publishing.
  18. de Oliveira, L.A.P. and Castro-Gomes, J.P. (2011), "Physical and mechanical behaviour of recycled PET fibre reinforced mortar", Constr. Build. Mater., 25(4), 1712-1717. https://doi.org/10.1016/j.conbuildmat.2010.11.044.
  19. Du, H. and Tan, K.H. (2014), "Waste glass powder as cement replacement in concrete", J. Adv. Concrete Technol., 12(11), 468-477. https://doi.org/10.3151/jact.12.468.
  20. Foti, D. (2011), "Preliminary analysis of concrete reinforced with waste bottles PET fibers", Constr. Build. Mater., 25(4), 1906-1915. https://doi.org/10.1016/j.conbuildmat.2010.11.066.
  21. Foti, D. (2013), "Use of recycled waste pet bottles fibers for the reinforcement of concrete", Compos. Struct., 96, 396-404. https://doi.org/10.1016/j.compstruct.2012.09.019.
  22. Frigione, M. (2010), "Recycling of PET bottles as fine aggregate in concrete", Waste Manage., 30(6), 1101-1106. https://doi.org/10.1016/j.wasman.2010.01.030.
  23. Gesoglu, M., Guneyisi, E., Khoshnaw, G. and Ipek, S. (2014a), "Abrasion and freezing-thawing resistance of pervious concretes containing waste rubbers", Constr. Build. Mater., 73, 19-24. https://doi.org/10.1016/j.conbuildmat.2014.09.047.
  24. Gesoglu, M., Guneyisi, E., Khoshnaw, G. and Ipek, S. (2014b), "Investigating properties of pervious concretes containing waste tire rubbers", Constr. Build. Mater., 63, 206-213. https://doi.org/10.1016/j.conbuildmat.2014.04.046.
  25. Ghernouti, Y., Rabehi, B., Bouziani, T., Ghezraoui, H. and Makhloufi, A. (2015), "Fresh and hardened properties of self-compacting concrete containing plastic bag waste fibers (WFSCC)", Constr. Build. Mater., 82, 89-100. https://doi.org/10.1016/j.conbuildmat.2015.02.059.
  26. Ghosh, S.K., Chaudhury, A., Datta, R. and Bera, D. (2015), "A review on performance of pervious concrete using waste materials", Int. J. Res. Eng. Technol., 4, 105-115.
  27. Guneyisi, E., Gesoglu, M., Kareem, Q. and Ipek, S. (2016), "Effect of different substitution of natural aggregate by recycled aggregate on performance characteristics of pervious concrete", Mater. Struct., 49(1-2), 521-536. https://doi.org/10.1617/s11527-014-0517-y.
  28. Hamidian, M., Shariati, M., Arabnejad, M. and Sinaei, H. (2011), "Assessment of high strength and light weight aggregate concrete properties using ultrasonic pulse velocity technique", Int. J. Phys. Sci., 6(22), 5261-5266.
  29. Heydari, A. and Shariati, M. (2018), "Buckling analysis of tapered BDFGM nano-beam under variable axial compression resting on elastic medium", Struct. Eng. Mech., 66(6), 737-748. https://doi.org/10.12989/sem.2018.66.6.737.
  30. Irwan, J., Asyraf, R., Othman, N., Koh, K.H., Annas, M.M.K. and Faisal, S. (2013), "The mechanical properties of PET fiber reinforced concrete from recycled bottle wastes", Adv. Mater. Res., 795, 347-351. https://doi.org/10.4028/www.scientific.net/AMR.795.347.
  31. Ismail, M., Shariati, M., Abdul Awal, A.S.M., Chiong, C.E., Sadeghipour Chahnasir, E., Porbar, A., Heydari, A. and khorami, M. (2018), "Strengthening of bolted shear joints in industrialized ferrocement construction", Steel Compos. Struct., 28(6), 681-690. https://doi.org/10.12989/scs.2018.28.6.681.
  32. Jain, A., Siddique, S., Gupta, T., Jain, S., Sharma, R.K. and Chaudhary, S. (2019), "Fresh, strength, durability and microstructural properties of shredded waste plastic concrete", Iran. J. Sci. Technol. Tran. Civil Eng., 43(1), 455-465. https://doi.org/10.1007/s40996-018-0178-0.
  33. Jalali, A., Daie, M., Nazhadan, S.V.M., Kazemi-Arbat, P. and Shariati, M. (2012), "Seismic performance of structures with pre-bent strips as a damper", Int. J. Phys. Sci., 7(26), 4061-4072. https://doi.org/10.5897/IJPS11.1324.
  34. Kandasamy, R. and Murugesan, R. (2011), "Fibre reinforced concrete using domestic waste plastics as fibres", ARPN J. Eng. Appl. Sci., 6(3), 75-82.
  35. Khaloo, A.R., Dehestani, M. and Rahmatabadi, P. (2008), "Mechanical properties of concrete containing a high volume of tire-rubber particles", Waste Manage., 28(12), 2472-2482. https://doi.org/10.1016/j.wasman.2008.01.015.
  36. Khan, I., Francois, R. and Castel, A. (2011), "Mechanical behavior of long-term corroded reinforced concrete beam", Modelling of Corroding Concrete Structures, Springer.
  37. Khorami, M., Alvansazyazdi, M., Shariati, M., Zandi, Y., Jalali, A. and Tahir, M. (2017), "Seismic performance evaluation of buckling restrained braced frames (BRBF) using incremental nonlinear dynamic analysis method (IDA)", Earthq. Eng., 13(6), 531-538 http://dx.doi.org/10.12989/eas.2017.13.6.531.
  38. Kim, S.B., Yi, N.H., Kim, H.Y., Kim, J.H.J. and Song, Y.C. (2010), "Material and structural performance evaluation of recycled PET fiber reinforced concrete", Cement Concrete Compos., 32(3), 232-240. https://doi.org/10.1016/j.cemconcomp.2009.11.002.
  39. Kou, S.C. and Poon, C.S. (2009), "Properties of self-compacting concrete prepared with recycled glass aggregate", Cement Concrete Compos., 31(2), 107-113. https://doi.org/10.1016/j.cemconcomp.2008.12.002.
  40. Li, D., Toghroli, A., Shariati, M., Sajedi, F., Bui, D.T., Kianmehr, P., Mohamad, E.T. and Khorami, M. (2019), "Application of polymer, silica-fume and crushed rubber in the production of Pervious concrete", Smart Struct. Syst., 23(2), 207-214. https://doi.org/10.12989/sss.2019.23.2.207.
  41. Limantara, A., Winarto, S., Gardjito, E., Subiyanto, B., Raharjo, D., Santoso, A., Sudarmanto, H. and Mudjanarko, S. (2018). Optimization of standard mix design of porous paving coconut fiber and shell for the parking area", AIP Conference Proceedings, AIP Publishing LLC.
  42. Liu, H., Luo, G., Gong, Y. and Wei, H. (2018), "Mechanical properties, permeability, and freeze-thaw resistance of pervious concrete modified by waste crumb rubbers", Appl. Sci., 8(10), 1843. https://doi.org/10.3390/app8101843.
  43. Lu, J.X. and Poon, C.S. (2019), "Recycling of waste glass in construction materials", New Trends in Eco-efficient and Recycled Concrete, New Trends in Eco-Efficient and Recycled Concrete, 153-167. https://doi.org/10.1016/B978-0-08-102480-5.00006-3.
  44. Lu, J.X., Zhan, B.J., Duan, Z.H. and Poon, C.S. (2017a), "Improving the performance of architectural mortar containing 100% recycled glass aggregates by using SCMs", Constr. Build. Mater., 153, 975-985. https://doi.org/10.1016/j.conbuildmat.2017.07.118.
  45. Lu, J.X., Zhan, B.J., Duan, Z.H. and Poon, C.S. (2017b), "Using glass powder to improve the durability of architectural mortar prepared with glass aggregates", Mater. Des., 135, 102-111. https://doi.org/10.1016/j.matdes.2017.09.016.
  46. Lucchin, M., Barcaccia, G. and Parrini, P. (2003), "Characterization of a flint maize (Zea mays L. convar. mays) Italian landrace: I. Morpho-phenological and agronomic traits", Genetic Res. Crop Evol., 50(3), 315-327. https://doi.org/10.1023/A:1023578207258.
  47. Luo, Z., Sinaei, H., Ibrahim, Z., Shariati, M., Jumaat, Z., Wakil, K., Pham, B.T., Mohamad, E.T. and Khorami, M. (2019), "Computational and experimental analysis of beam to column joints reinforced with CFRP plates", Steel Compos. Struct., 30(3), 271-280. http://dx.doi.org/10.12989/scs.2019.30.3.271.
  48. Mehta, P.K. and Monteiro, P.J. (2017), Concrete Microstructure, Properties and Materials.
  49. Mohammadhassani, M., Akib, S., Shariati, M., Suhatril, M. and Arabnejad Khanouki, M.M. (2014a), "An experimental study on the failure modes of high strength concrete beams with particular references to variation of the tensile reinforcement ratio", Eng. Fail. Anal., 41, 73-80. https://doi.org/10.1016/j.engfailanal.2013.08.014.
  50. Mohammadhassani, M., Suhatril, M., Shariati, M. and Ghanbari, F. (2014b), "Ductility and strength assessment of HSC beams with varying of tensile reinforcement ratios", Struct. Eng. Mech., 48(6), 833-848. https://doi.org/10.12989/sem.2013.48.6.833.
  51. Muntohar, A.S., Widianti, A., Hartono, E. and Diana, W. (2012), "Engineering properties of silty soil stabilized with lime and rice husk ash and reinforced with waste plastic fiber", J. Mater. Civil Eng., 25(9), 1260-1270. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000659.
  52. Naghipour, M., Yousofizinsaz, G. and Shariati, M. (2020), "Experimental study on axial compressive behavior of welded built-up CFT stub columns made by cold-formed sections with different welding lines", Steel Compos. Struct., 34(3), 347. https://doi.org/10.12989/scs.2020.34.3.347.
  53. Nibudey, R., Nagarnaik, P., Parbat, D. and Pande, A. (2013), "Strength and fracture properties of post consumed waste plastic fiber reinforced concrete", Int. J. Civil Struct. Environ. Infrastr. Eng. Res. Develop. (IJCSEIERD), 3(2), 9-16.
  54. Nosrati, A., Zandi, Y., Shariati, M., Khademi, K., Darvishnezhad Aliabad, M., Marto, A., Mu'azu, M., Ghanbari, E., Mandizadeh, M. B. and Shariati, A. (2018), "Portland cement structure and its major oxides and fineness", Smart Struct. Syst., 22(4), 425-432. https://doi.org/10.12989/sss.2018.22.4.425.
  55. Okamura, H. (1997), "Self-compacting high-performance concrete", Concrete Int., 19(7), 50-54.
  56. Pacheco-Torgal, F., Ding, Y. and Jalali, S. (2012), "Properties and durability of concrete containing polymeric wastes (tyre rubber and polyethylene terephthalate bottles), An overview", Constr. Build. Mater., 30, 714-724. https://doi.org/10.1016/j.conbuildmat.2011.11.047.
  57. Park, S.B., Lee, B.C. and Kim, J.H. (2004), "Studies on mechanical properties of concrete containing waste glass aggregate", Cement Concrete Res., 34(12), 2181-2189. https://doi.org/10.1016/j.cemconres.2004.02.006.
  58. Rahmani, E., Dehestani, M., Beygi, M., Allahyari, H. and Nikbin, I. (2013), "On the mechanical properties of concrete containing waste PET particles", Constr. Build. Mater., 47, 1302-1308. https://doi.org/10.1016/j.conbuildmat.2013.06.041.
  59. Razavian, L., Naghipour, M., Shariati, M. and Safa, M. (2020), "Experimental study of the behavior of composite timber columns confined with hollow rectangular steel sections under compression", Struct. Eng. Mech., 74(1), 145. https://doi.org/10.12989/sem.2020.74.1.145.
  60. Ren, W., Xu, J. and Su, H. (2016), "Dynamic compressive behavior of basalt fiber reinforced concrete after exposure to elevated temperatures", Fire Mater., 40(5), 738-755. https://doi.org/10.1002/fam.2339.
  61. Safa, M., Maleka, A., Arjomand, M.A., Khorami, M. and Shariati, M. (2019), "Strain rate effects on soil-geosynthetic interaction in fine-grained soil", Geomech. Eng., 19(6), 523-532. https://doi.org/10.12989/gae.2019.19.6.523.
  62. Safa, M., Sari, P.A., Shariat, M., Suhatril, M., Trung, N.T., Wakil, K. and Khorami, M. (2020), "Development of neuro-fuzzy and neuro-bee predictive models for prediction of the safety factor of eco-protection slopes", Physica A, 550(15),124046. https://doi.org/10.1016/j.physa.2019.124046.
  63. Sajedi, F. and Shariati, M. (2019), "Behavior study of NC and HSC RCCs confined by GRP casing and CFRP wrapping", Steel Compos. Struct., 30(5), 417-432. https://doi.org/10.12989/scs.2019.30.5.417.
  64. Sarang, G. (2019), "Replacement of stabilizers by recycling plastic in asphalt concrete", Use of Recycled Plastics in Eco-efficient Concrete, Woodhead Publishing.
  65. Shariat, M., Mahmoudi Azar, S., Arjomand, M.A., Salmani Tehrani, H., Daei, M. and Safa, M. (2020), "Comparison of dynamic behavior of shallow foundations based on pile and geosynthetic materials in fine-grained clayey soils", Geomech. Eng., 19(6), 473-484. 10.12989/gae.2020.19.6.473.
  66. Shariati, A., Hosseini, S.H.S., Ebrahimi, F. and Toghroli, A. (2020a), "Nonlinear dynamics and vibration of reinforced piezoelectric scale-dependent plates as a class of nonlinear Mathieu-Hill systems: parametric excitation analysis", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-00942-y.
  67. Shariati, M. (2008), "Assessment of building using none-destructive test techniques (ultra sonic pulse velocity and schmidt rebound hammer)", Universiti Putra Malaysia.
  68. Shariati, M., Ghorbani, M., Naghipour, M., Alinejad, N. and Toghroli, A. (2020b), "The effect of RBS connection on energy absorption in tall buildings with braced tube frame system", Steel Compos. Struct., 34(3), 393-407. https://doi.org/10.12989/scs.2020.34.3.393.
  69. Shariati, M., Heyrati, A., Zandi, Y., Laka, H., Toghroli, A., Kianmehr, P., Safa, M., Salih, M.N. and Poi-Ngian, S. (2019a), "Application of waste tire rubber aggregate in porous concrete", Smart Struct. Syst., 24(4), 553-566. https://doi.org/10.12989/sss.2019.24.4.553.
  70. Shariati, M., Mafipour, M.S., Haido, J.H., Yousif, S.T., Toghroli, A., Trung, N.T. and Shariati, A. (2020c), "Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS)", Steel Compos. Struct., 34(1), 155. https://doi.org/10.12989/scs.2020.34.1.155.
  71. Shariati, M., Mafipour, M.S., Mehrabi, P., Ahmadi, M., Wakil, K., Nguyen-Thoi, T. and Toghroli, A. (2020d), "Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm)", Smart Struct. Syst., 25(2), 183-195. https://doi.org/10.12989/sss.2020.25.2.183.
  72. Shariati, M., Naghipour, M., Yousofizinsaz, G., Toghroli, A. and Pahlavannejad Tabarestani, N. (2020e), "Numerical study on the axial compressive behavior of built-up CFT columns considering different welding lines", Steel Compos. Struct., 34(3), 377-391. https://doi.org/10.12989/scs.2020.34.3.377.
  73. Shariati, M., Naghipour, M., Yousofizinsaz, G., Toghroli, A. and Tabarestani, N.P. (2020f), "Numerical study on the axial compressive behavior of built-up CFT columns considering different welding lines", Steel Compos. Struct., 34(3), 377. https://doi.org/10.12989/sem.2019.70.4.499.
  74. Shariati, M., Rafiei, S., Zandi, Y., Fooladvand, R., Gharehaghaj, B., Shariat, A., Trung, N.T., Salih, M.N., Mehrabi, P. and Poi-Ngian, S. (2019b), "Experimental investigation on the effect of cementitious materials on fresh and mechanical properties of self-consolidating concrete", Adv Concrete Constr., 8(3), 225-237. https://doi.org/10.12989/acc.2019.8.3.225.
  75. Shariati, M., Ramli Sulong, N.H., Arabnejad Khanouki, M.M., Shafigh, P. and Sinaei, H. (2011), "Assessing the strength of reinforced concrete structures through Ultrasonic Pulse Velocity and Schmidt Rebound Hammer tests", Scientif. Res. Essay., 6(1), 213-220. https://doi.org/10.5897/SRE10.879.
  76. Sharma, R. and Bansal, P.P. (2016), "Use of different forms of waste plastic in concrete-a review", J. Clean. Prod., 112, 473-482. https://doi.org/10.1016/j.jclepro.2015.08.042.
  77. Siddique, R., Khatib, J. and Kaur, I. (2008), "Use of recycled plastic in concrete: A review", Waste Manage., 28(10), 1835-1852. https://doi.org/10.1016/j.wasman.2007.09.011.
  78. Siddique, R. and Naik, T.R. (2004), "Properties of concrete containing scrap-tire rubber-an overview", Waste Manage., 24(6), 563-569. https://doi.org/10.1016/j.wasman.2004.01.006.
  79. Sinaei, H., Jumaat, M.Z. and Shariati, M. (2011), "Numerical investigation on exterior reinforced concrete Beam-Column joint strengthened by composite fiber reinforced polymer (CFRP)", Int. J. Phys. Sci., 6(28), 6572-6579. https://doi.org/10.5897/IJPS11.1225.
  80. Son, K.S., Hajirasouliha, I. and Pilakoutas, K. (2011), "Strength and deformability of waste tyre rubber-filled reinforced concrete columns", Constr. Build. Mater., 25(1), 218-226. https://doi.org/10.1016/j.conbuildmat.2010.06.035.
  81. Tamanna, N., Tuladhar, R. and Sivakugan, N. (2020), "Performance of recycled waste glass sand as partial replacement of sand in concrete", Constr. Build. Mater., 239, 117804. https://doi.org/10.1016/j.conbuildmat.2019.117804.
  82. Tan, K.H. and Du, H. (2013), "Use of waste glass as sand in mortar: Part I-Fresh, mechanical and durability properties", Cement Concrete Compos., 35(1), 109-117. https://doi.org/10.1016/j.cemconcomp.2012.08.028.
  83. Thomas, B.S., Kumar, S., Mehra, P., Gupta, R.C., Joseph, M. and Csetenyi, L.J. (2016), "Abrasion resistance of sustainable green concrete containing waste tire rubber particles", Constr. Build. Mater., 124, 906-909. https://doi.org/10.1016/j.conbuildmat.2016.07.110.
  84. Toghroli, A., Mehrabi, P., Shariati, M., Trung, N.T., Jahandari, S. and Rasekh, H. (2020), "Evaluating the use of recycled concrete aggregate and pozzolanic additives in fiber-reinforced pervious concrete with industrial and recycled fibers", Constr. Build. Mater., 252, 118997. https://doi.org/10.1016/j.conbuildmat.2020.118997.
  85. Toghroli, A., Shariati, M., Karim, M.R. and Ibrahim, Z. (2017), "Investigation on composite polymer and silica fume-rubber aggregate pervious concrete", Fifth International Conference on Advances in Civil, Structural and Mechanical Engineering- CSM 2017, Zurich, Switzerland.
  86. Toghroli, A., Shariati, M., Sajedi, F., Ibrahim, Z., Koting, S., Mohamad, E.T. and Khorami, M. (2018), "A review on pavement porous concrete using recycled waste materials", Smart Struct. Syst., 22(4), 433-440. https://doi.org/10.12989/sss.2018.22.4.433.
  87. Topcu, I.B. and Canbaz, M. (2004), "Properties of concrete containing waste glass", Cement Concrete Res., 34(2), 267-274. https://doi.org/10.1016/j.cemconres.2003.07.003.
  88. Trung, N.T., Alemi, N., Haido, J.H., Shariati, M., Baradaran, S. and Yousif, S.T. (2019), "Reduction of cement consumption by producing smart green concretes with natural zeolites", Smart Struct. Syst., 24(3), 415-425. https://doi.org/10.12989/sss.2019.24.3.415.
  89. Wang, H.Y. (2009), "A study of the effects of LCD glass sand on the properties of concrete", Waste Manage., 29(1), 335-341. https://doi.org/10.1016/j.wasman.2008.03.005.
  90. Xie, Q., Sinaei, H., Shariati, M., Khorami, M., Mohamad, E.T. and Bui, D.T. (2019), "An experimental study on the effect of CFRP on behavior of reinforce concrete beam column connections", Steel Compos. Struct., 30(5), 433-441. https://doi.org/10.12989/scs.2019.30.5.433.
  91. Yang, S., Cui, H. and Poon, C.S. (2018), "Assessment of in-situ alkali-silica reaction (ASR) development of glass aggregate concrete prepared with dry-mix and conventional wet-mix methods by X-ray computed micro-tomography", Cement Concrete Compos., 90, 266-276. https://doi.org/10.1016/j.cemconcomp.2018.03.027.
  92. Ziaei-Nia, A., Shariati, M. and Salehabadi, E. (2018), "Dynamic mix design optimization of high-performance concrete", Steel Compos. Struct., 29(1), 67-75. https://doi.org/10.12989/scs.2018.29.1.067.

Cited by

  1. Axial compression performance of basalt-fiber-reinforced recycled-concrete-filled square steel tubular stub column vol.10, pp.6, 2020, https://doi.org/10.12989/acc.2020.10.6.559
  2. Strength Analysis of a Two-Layer PETF-Concrete Column with Allowance for Contact Interaction between Layers vol.2021, 2020, https://doi.org/10.1155/2021/4517657
  3. Properties and durability of concrete with olive waste ash as a partial cement replacement vol.11, pp.1, 2020, https://doi.org/10.12989/acc.2021.11.1.059
  4. A study on investigating the properties of alkali-activated roller compacted concretes vol.12, pp.2, 2020, https://doi.org/10.12989/acc.2021.12.2.117