DOI QR코드

DOI QR Code

Eccentric compressive behavior of novel composite walls with T-section

  • Qin, Ying (Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University) ;
  • Chen, Xin (School of Civil Engineering, Southeast University) ;
  • Xi, Wang (School of Civil Engineering, Southeast University) ;
  • Zhu, Xingyu (School of Civil Engineering, Southeast University) ;
  • Chen, Yuanze (School of Civil Engineering, Southeast University)
  • 투고 : 2020.01.15
  • 심사 : 2020.05.11
  • 발행 : 2020.05.25

초록

Double skin composite walls are alternatives to concrete walls to resist gravity load in structures. The composite action between steel faceplates and concrete core largely depends on the internal mechanical connectors. This paper investigates the structural behavior of novel composite wall system with T section and under combined compressive force and bending moment. The truss connectors are used to bond the steel faceplates to concrete core. Four short specimens were designed and tested under eccentric compression. The influences of the thickness of steel faceplates, the truss spacing, and the thickness of web wall were discussed based on the test results. The N-M interaction curves by AISC 360, Eurocode 4, and CECS 159 were compared with the test data. It was found that AISC 360 provided the most reasonable predictions.

키워드

과제정보

This work is sponsored by the Natural Science Foundation of Jiangsu Province (Grant No. BK20170685), and the National Key Research and Development Program of China (Grant No. 2017YFC0703802). The authors would like to thank the Zhejiang Southeast Space Frame Group Company Limited for the supply of test specimens, Jianhong Han in the steel research group for the help with test preparation, and Xiongliang Zhou, Weigang Chen, Yunfei He and Jianwei Ni for their assistance with the specimen fabrication.

참고문헌

  1. AISC 360-16 (2016), Specification for structural steel buildings, American Institute of Steel Construction; Chicago, USA.
  2. Bafti, F.G., Mortezaei, A. and Kheyroddin, A. (2019), "The length of plastic hinge area in the flanged reinforced concrete shear walls subjected to earthquake ground motions", Struct. Eng. Mech., 69(6), 651-665. https://doi.org/10.12989/sem.2019.69.6.651.
  3. Beiraghi, H. (2018), "Energy demands in reinforced concrete wall piers coupled by buckling restrained braces subjected to nearfault earthquake", Steel Compos. Struct., 27(6), 703-716. http://dx.doi.org/10.12989/scs.2018.27.6.703.
  4. Bruhl, J.C. and Varma, A.H. (2018), "Experimental evaluation of steel-plate composite walls subject to blast loads", J. Struct. Eng., 144(9), 04018155. http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0002163.
  5. CECS 159:2004 (2004), Technical specification for structures with concrete-filled rectangular steel tube members, China Association for Engineering Construction Standardization; Beijing, China.
  6. Chen, L., Mahmoud, H., Tong, S.M. and Zhou, Y. (2015), "Seismic behavior of double steel plate-HSC composite walls", Eng. Struct., 102, 1-12. http://dx.doi.org/10.1016/j.engstruct.2015.08.017.
  7. Chen, L.H., Wang, S.Y., Lou, Y. and Xia, D.R. (2019), "Seismic behavior of double-skin composite wall with L-shaped and Cshaped connectors", J. Constr. Steel Res., 160, 255-270. http://dx.doi.org/10.1016/j.jcsr.2019.05.033.
  8. Curkovic, I., Skejic, D. and Dzeba, I. (2019), "Seismic performance of steel plate shear walls with variable column flexural stiffness", Steel Compos. Struct., 33(1), 833-850. http://dx.doi.org/10.12989/scs.2019.33.1.833.
  9. Deng, E.F., Zong, L. and Ding, Y. (2019), "Numerical and analytical study on initial stiffness of corrugated steel plate shear walls in modular construction", Steel Compos. Struct., 32(3), 347-359. http://dx.doi.org/10.12989/scs.2019.32.3.347.
  10. EN 1994-1-1:2004 (2004), Eurocode 4: Design of composite steel and concrete structures-Part 1-1: General rules and rules for buildings. British Standards Institution; London, UK.
  11. Eom, T.S., Park, H.G., Lee, C.H., Kim, J.H. and Chang, I.H. (2009), "Behavior of double skin composite wall subjected to in-plane cyclic loading", J. Struct. Eng., 135(10), 1239-1249. http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000057.
  12. GB 50010-2010 (2015), Code for design of concrete structures, China Architecture & Building Press, Beijing, China.
  13. GB/T 2975-2018 (2018), Steel and Steel Products-Location and Preparation of Samples and Test Pieces for Mechanical Testing, China Standards Press, Beijing, China.
  14. GB/T 50081-2019 (2019), Standard for test methods of concrete physical and mechanical properties, China Architecture & Building Press, Beijing, China.
  15. Hilo, S.J., Badaruzzaman, W.H.W, Osman, S.A. and Al-Zand, A.W. (2016), "Structural behavior of composite wall systems strengthened with embedded cold-formed steel tube", Thin Wall. Struct., 98, 607-616. http://dx.doi.org/10.1016/j.tws.2015.10.028.
  16. Hossain, K.M.A., Mol, L.K. and Anwar, M.S. (2015), "Axial load behaviour of pierced profiled composite walls with strength enhancement devices", J. Constr. Steel Res., 110, 48-64. http://dx.doi.org/10.1016/j.jcsr.2015.03.009.
  17. Hu, H.S., Nie, J.G. and Eatherton, M.R. (2014), "Deformation capacity of concrete-filled steel plate composite shear walls", J. Constr. Steel Res., 103, 148-158. http://dx.doi.org/10.1016/j.jcsr.2014.08.006.
  18. Huang, S.T., Huang, Y.S., He, A., Tang, X.L, Chen, Q.J., Liu, X. and Cai, J. (2018), "Experimental study on seismic behaviour of an innovative composite shear wall", J. Constr. Steel Res., 148, 165-179. https://doi.org/10.1016/j.jcsr.2018.05.003.
  19. Huang, Z. and Liew, J.Y.R. (2016), "Compressive resistance of steel-concrete-steel sandwich composite walls with J-hook connectors", J. Constr. Steel Res., 124, 142-162. http://dx.doi.org/10.1016/j.jcsr.2016.05.001.
  20. Ji, X.D., Cheng, X.W., Jia, X.F. and Varma, A.H. (2017), "Cyclic in-plane shear behavior of double-skin composite walls in high-rise buildings", J. Struct. Eng., 143(6), 04017025. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001749.
  21. Keihani, R., Bahadori-Jahromi, A. and Goodchild, C. (2019), "The significance of removing shear walls in existing low-rise RC frame buildings - Sustainable approach", Struct. Eng. Mech., 71(5), 563-576. https://doi.org/10.12989/sem.2019.71.5.563.
  22. Liu, W.Y., Li, G.Q. and Jiang, J. (2018), "Capacity design of boundary elements of beam-connected buckling restrained steel plate shear wall", Steel Compos. Struct., 29(2), 231-242. https://doi.org/10.12989/scs.2018.29.2.231.
  23. Ma, K., Ma, Y. and Liu, B. (2019), "Seismic behavior of double steel concrete composite walls", Struct. Design Tall Spec. Build., 28, e1623. https://doi.org/10.1002/tal.1623.
  24. Nguyen, N.H. and Whittaker, A.S. (2017), "Numerical modelling of steel-plate concrete composite shear walls", Eng. Struct., 150, 1-11. http://dx.doi.org/10.1016/j.engstruct.2017.06.030.
  25. Nie, J.G., Hu, H.S., Fan, J.S., Tao, M.X., Li, S.Y. and Liu, F.J. (2013), "Experimental study on seismic behavior of high-strength concrete filled double-steel-plate composite walls", J. Constr. Steel Res., 88, 206-219. http://dx.doi.org/10.1016/j.jcsr.2013.05.001.
  26. Prabha, P., Marimuthu, V., Saravanan, M., Palani, G.S., Lakshmanan, N. and Senthil, R. (2013), "Effect of confinement on steel-concrete composite light-weight load-bearing wall panels under compression", J. Constr. Steel Res., 81, 11-19. http://dx.doi.org/10.1016/j.jcsr.2012.10.008.
  27. Qin, Y., Shu, G.P., Du, E.F. and Lu, R.H. (2018), "Buckling analysis of elastically-restrained steel plates under eccentric compression", Steel Compos. Struct., 29(3), 379-389. https://doi.org/10.12989/scs.2018.29.3.379.
  28. Qin, Y., Shu, G.P., Zhou, G.G. and Han, J.H. (2019), "Compressive behavior of double skin composite wall with different plate thicknesses", J. Constr. Steel Res., 157, 297-313. https://doi.org/10.1016/j.jcsr.2019.02.023.
  29. Qin, Y., Shu, G.P., Zhou, X.L., Han, J.H. and Zhang, H.K. (2020), "Behavior of T-shaped sandwich composite walls with truss connectors under eccentric compression", J. Constr. Steel Res., 169, 106067. https://doi.org/10.1016/j.jcsr.2020.106067.
  30. Seddighi, M., Barkhordari, M.A. and Hosseinzadeh, S.A.A. (2019), "Behavior of FRP-reinforced steel plate shear walls with various reinforcement designs", Steel Compos. Struct., 33(5), 729-746. http://dx.doi.org/10.12989/scs.2019.33.5.729.
  31. Sener, K.C., Varma, A.H., and Ayhan, D. (2015), "Steel-plate composite (SC) walls: Out-of-plane flexural behavior, database, and design", J. Constr. Steel Res., 108, 46-59. http://dx.doi.org/10.1016/j.jcsr.2015.02.002.
  32. Shariati, M., Faegh, S.S., Mehrabi, P., Bahavarnia, S., Zandi, Y., Masoom, D.R., Toghroli, A., Trung, N.T. and Salih, M.N.A. (2019), "Numerical study on the structural performance of corrugated low yield point steel plate shear walls with circular openings", Steel Compos. Struct., 33(4), 569-581. http://dx.doi.org/10.12989/scs.2019.33.4.569.
  33. Wei, F., Zheng, Z., Yu, J. and Wang, Y. (2019), "Structure behavior of concrete filled double-steel-plate composite walls under fire", Adv. Struct. Eng., 22(8), 1895-1908. https://doi.org/10.1177/1369433218825238.
  34. Xiong, Q., Chen, Z., Zhang, W., Du, Y., Zhou, T. and Kang, J. (2017), "Compressive behaviour and design of L-shaped columns fabricated using concrete-filled steel tubes", Eng. Struct., 152, 758-770. https://doi.org/10.1016/j.engstruct.2017.09.046.
  35. Yan, J.B., Wang, Z., Wang, T. and Wang, X.T. (2018), "Shear and tensile behaviors of headed stud connectors in double skin composite shear wall", Steel Compos. Struct., 26(6), 759-769. https://doi.org/10.12989/scs.2013.91.4.1301.
  36. Yan, J.B., Chen, A.Z. and Wang, T. (2019), "Developments of double skin composite walls using novel enhanced C-channel connectors", Steel Compos. Struct., 33(6), 877-889. https://doi.org/10.12989/scs.2019.33.6.877.
  37. Yang, Y., Liu, J.B. and Fan, J.S. (2016), "Buckling behavior of double-skin composite walls: An experimental and modeling study", J. Constr. Steel Res., 121, 126-135. http://dx.doi.org/10.1016/j.jcsr.2016.01.019.
  38. Yuksel, S.B. (2019), "Experimental investigation of retrofitted shear walls reinforced with welded wire mesh fabric", Struct. Eng. Mech., 70(2), 133-141. https://doi.org/10.12989/sem.2019.70.2.133.
  39. Zhang, K., Varma, A.H., Malushte, S.R. and Gallocher, S. (2014), "Effect of shear connectors on local buckling and composite action in steel concrete composite walls", Nucl. Eng. Des., 269, 231-239. http://dx.doi.org/10.1016/j.nucengdes.2013.08.035.

피인용 문헌

  1. Behavior of L-shaped double-skin composite walls under compression and biaxial bending vol.37, pp.4, 2020, https://doi.org/10.12989/scs.2020.37.4.405