References
- Jackson TA, Klein MG. Scarabs as pests: a continuing problem. Coleopterists Bull. 2006;60:102-119. https://doi.org/10.1649/0010-065X(2006)60[102:SAPACP]2.0.CO;2
- Behle RW, Goett EJ. Dosage response mortality of Japanese beetle, masked chafer, and June beetle (Coleoptera: Scarabaeidae) adults when exposed to experimental and commercially available granules containing Metarhizium brunneum. J Econ Entomol. 2016;109:1109-1115. https://doi.org/10.1093/jee/tow080
- Gyawaly S, Koppenh€ofer A, Wu S, et al. Biology, ecology, and management of masked chafer (Coleoptera: Scarabaeidae) grubs in turfgrass. J Integr Pest Manag. 2016;7:3. https://doi.org/10.1093/jipm/pmw002
- Potter DA, Braman S. Ecology and management of turfgrass insects. Annu Rev Entomol. 1991;36:383-406. https://doi.org/10.1146/annurev.en.36.010191.002123
- Cimino AM, Boyles AL, Thayer KA, et al. Effects of neonicotinoid pesticide exposure on human health: a systematic review. Environ Health Perspect. 2017;125:155-162. https://doi.org/10.1289/EHP515
- Wood TJ, Goulson D. The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. Environ Sci Pollut Res. 2017;24:17285-17325. https://doi.org/10.1007/s11356-017-9240-x
- Ramos Y, Portal O, Lysoe E, et al. Diversity and abundance of Beauveria bassiana in soils, stink bugs and plant tissues of common bean from organic and conventional fields. J Invertebr Pathol. 2017;150:114-120. https://doi.org/10.1016/j.jip.2017.10.003
- Zimmermann G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci Technol. 2007;17:879-920. https://doi.org/10.1080/09583150701593963
- Jackson MA, Dunlap CA, Jaronski ST. Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. BioControl. 2010;55:129-145. https://doi.org/10.1007/s10526-009-9240-y
- Vega FE, Goettel MS, Blackwell M, et al. Fungal entomopathogens: new insights on their ecology. Fungal Ecol. 2009;2:149-159. https://doi.org/10.1016/j.funeco.2009.05.001
- Kim HG, Park KH, Lee S, et al. Effects of different diets and temperatures on larval growth of the white-spotted flower chafer, Protaetia brevitarsis (Kolbe)(Coleoptera: Scarabaeidae). Int J Ind Entomol. 2015;31:75-78. https://doi.org/10.7852/ijie.2015.31.2.75
- Kwon O. Effect of different diets on larval growth of Protaetia brevitarsis seulensis (Kolbe) (Coleoptera: Cetoniidae). Entomol Res. 2009;39:152-154. https://doi.org/10.1111/j.1748-5967.2009.00213.x
- Kwak KW, Han MS, Nam SH, et al. Detection of insect pathogen Serratia marcescens in Protaetia brevitarsis seulensis (Kolbe) from Korea. Int J Ind Entomol. 2014;28:25-31. https://doi.org/10.7852/ijie.2014.28.2.25
- Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673-4680. https://doi.org/10.1093/nar/22.22.4673
- Nicholas KB. GeneDoc: analysis and visualization of genetic variation. Embnew News. 1997;4:14.
- Saitou N. Property and efficiency of the maximum likelihood method for molecular phylogeny. J Mol Evol. 1988;27:261-273. https://doi.org/10.1007/BF02100082
- Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725-2729. https://doi.org/10.1093/molbev/mst197
- Song MH, Yu JS, Kim S, et al. Downstream processing of Beauveria bassiana and Metarhizium anisopliae- based fungal biopesticides against Riptortus pedestris: solid culture and delivery of conidia. Biocontrol Sci Technol. 2019;29:514-532. https://doi.org/10.1080/09583157.2019.1566951
- Karpouzas DG, Walker A, Froud-Williams RJ, et al. Evidence for the enhanced biodegradation of ethoprophos and carbofuran in soils from Greece and the UK. Pestic Sci. 1999;55:301-311. https://doi.org/10.1002/(SICI)1096-9063(199903)55:3<301::AID-PS897>3.0.CO;2-F
- Niemczyk H, Chapman R. Evidence of enhanced degradation of isofenphos in turfgrass thatch and soil. J Econ Entomol. 1987;80:880-882. https://doi.org/10.1093/jee/80.4.880
- Lee SJ, Kim S, Kim JC, et al. Entomopathogenic Beauveria bassiana granules to control soil-dwelling stage of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). BioControl. 2017;62:639-648. https://doi.org/10.1007/s10526-017-9818-8
- Lovett B, St. Leger RJ. Genetically engineering better fungal biopesticides. Pest Manag Sci. 2018;74:781-789. https://doi.org/10.1002/ps.4734
- Chen R-z, Li y. A novel plant volatile attractant scheme to protect corn in China from the whitespotted flower chafer (Coleoptera: Scarabaeidae: Cetoniinae). J Pest Sci. 2011;84:327-335. https://doi.org/10.1007/s10340-011-0353-6
- Meyling NV, Thorup-Kristensen K, Eilenberg J. Below-and aboveground abundance and distribution of fungal entomopathogens in experimental conventional and organic cropping systems. Biol Control. 2011;59:180-186. https://doi.org/10.1016/j.biocontrol.2011.07.017
- Parker B, Skinner M, Gouli S, et al. Persistence of Beauveria bassiana sensu lato and Metarhizium anisopliae sensu lato in Vermont (USA) forest soil. Biocontrol Sci Technol. 2015;25:768-788. https://doi.org/10.1080/09583157.2015.1016895
- Alkhaibari AM, Lord AM, Maffeis T, et al. Highly specific host-pathogen interactions influence Metarhizium brunneum blastospore virulence against Culex quinquefasciatus larvae. Virulence. 2018;9:1449-1467. https://doi.org/10.1080/21505594.2018.1509665
- Lee SJ, Lee MR, Kim S, et al. Genomic analysis of the insect-killing fungus Beauveria bassiana JEF-007 as a biopesticide. Sci Rep. 2018;8:12388. https://doi.org/10.1038/s41598-018-30856-1
- Ramoutar D, Legrand AI, Alm SR. Field performance of Metarhizium anisopliae against Popillia japonica (Coleoptera: Scarabaeidae) and Listronotus maculicollis (Coleoptera: Curculionidae) larvae in turfgrass. J Entomol Sci. 2010;45:20-26. https://doi.org/10.18474/0749-8004-45.1.20
- Milner RJ, Lim RP, Hunter DM. Risks to the aquatic ecosystem from the application of Metarhizium anisopliae for locust control in Australia. Pest Manag Sci. 2002;58:718-723. https://doi.org/10.1002/ps.517
- Behle RW, Richmond DS, Jackson MA, et al. Evaluation of Metarhizium brunneum F52 (Hypocreales: Clavicipitaceae) for control of Japanese beetle larvae in turfgrass. J Econ Entomol. 2015;108:1587-1595. https://doi.org/10.1093/jee/tov176
- Erler F, Ates AO. Potential of two entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae (Coleoptera: Scarabaeidae), as biological control agents against the June beetle. J Insect Sci. 2015;15:44-44. https://doi.org/10.1093/jisesa/iev029
- Park SE, Kim JC, Lee SJ, et al. Solid cultures of thrips-pathogenic fungi Isaria javanica strains for enhanced conidial productivity and thermotolerance. J Asia-Pac Entomol. 2018;21:1102-1109. https://doi.org/10.1016/j.aspen.2018.08.005
- Milner RJ, Samson P, Morton R. Persistence of conidia of Metarhizium anisopliae in sugarcane fields: Effect of isolate and formulation on persistence over 3.5 years. Biocontrol Sci Technol. 2003;13:507-516. https://doi.org/10.1080/0958315031000140965
- Pilz C, Enkerli J, Wegensteiner R, et al. Establishment and persistence of the entomopathogenic fungus Metarhizium anisopliae in maize fields. J Appl Entomol. 2011;135:393-403. https://doi.org/10.1111/j.1439-0418.2010.01566.x
- Samson PR, Milner RJ, McLennan PD. Field trials of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) against Inopus rubriceps (Diptera: Stratiomyidae) in sugarcane. Environ Entomol. 1994;23:749-754. https://doi.org/10.1093/ee/23.3.749
Cited by
- Development of a fluid‐bed coating process for soil‐granule‐based formulations of Metarhizium brunneum, Cordyceps fumosorosea or Beauveria bassiana vol.131, pp.1, 2020, https://doi.org/10.1111/jam.14826
- Effectiveness of granular formulations of Metarhizium anisopliae and Metarhizium brunneum (Hypocreales: Clavicipitaceae) on off-host larvae of Dermacentor albipictus (Acari: Ixodidae) vol.31, pp.11, 2021, https://doi.org/10.1080/09583157.2021.1926428
- Identification and field verification of an aggregation pheromone from the white-spotted flower chafer, Protaetia brevitarsis Lewis (Coleoptera: Scarabaeidae) vol.11, pp.1, 2020, https://doi.org/10.1038/s41598-021-01887-y