DOI QR코드

DOI QR Code

Soil Application of Metarhizium anisopliae JEF-314 Granules to Control, Flower Chafer Beetle, Protaetia brevitarsis seulensis

  • Kim, Sihyeon (Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University) ;
  • Kim, Jong Cheol (Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University) ;
  • Lee, Se Jin (Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University) ;
  • Lee, Mi Rong (Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University) ;
  • Park, So Eun (Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University) ;
  • Li, Dongwei (Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University) ;
  • Baek, Sehyeon (Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University) ;
  • Shin, Tae Young (Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University) ;
  • Gasmi, Laila (Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University) ;
  • Kim, Jae Su (Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University)
  • Received : 2019.07.19
  • Accepted : 2020.02.20
  • Published : 2020.04.30

Abstract

Root-feeding Scarabaeidae, particularly white grubs are considered among the most harmful coleopteran insect pests in turfgrass. In this work, sixteen entomopathogenic fungal species were assayed against flower chafer beetle, Protaetia brevitarsis (Coleoptera: Scarabaeidae) and Metarhizium anisopliae JEF-314 showed high virulence. The control ability of the isolate JEF-314 has been in detail tested for a model insect flower chafer beetle. Further analyses showed insect stage-dependent virulence where the fungal virulence was the highest against smaller instar larvae. Additionally, we confirmed that millet-based solid cultured granule was effective against the soil-dwelling larval stage. The isolate also showed a similar ability for a representative pest (Popillia spp.) in laboratory conditions. Our results clearly suggest a high potential of M. anisopliae JEF-314 to control the flower chafer beetle, possibly resulting in controlling of root-feeding white grubs in turfgrass. Based on the insect life cycle and susceptibility to the fungus, late spring and summer time would be the optimum time to apply JEF-314 granules for an effective control. Further characterization of the efficacy of the fungus under field conditions against the Scarabaeidae beetles might provide an efficient tool to control this beetle in an environment-friendly way.

Keywords

References

  1. Jackson TA, Klein MG. Scarabs as pests: a continuing problem. Coleopterists Bull. 2006;60:102-119. https://doi.org/10.1649/0010-065X(2006)60[102:SAPACP]2.0.CO;2
  2. Behle RW, Goett EJ. Dosage response mortality of Japanese beetle, masked chafer, and June beetle (Coleoptera: Scarabaeidae) adults when exposed to experimental and commercially available granules containing Metarhizium brunneum. J Econ Entomol. 2016;109:1109-1115. https://doi.org/10.1093/jee/tow080
  3. Gyawaly S, Koppenh€ofer A, Wu S, et al. Biology, ecology, and management of masked chafer (Coleoptera: Scarabaeidae) grubs in turfgrass. J Integr Pest Manag. 2016;7:3. https://doi.org/10.1093/jipm/pmw002
  4. Potter DA, Braman S. Ecology and management of turfgrass insects. Annu Rev Entomol. 1991;36:383-406. https://doi.org/10.1146/annurev.en.36.010191.002123
  5. Cimino AM, Boyles AL, Thayer KA, et al. Effects of neonicotinoid pesticide exposure on human health: a systematic review. Environ Health Perspect. 2017;125:155-162. https://doi.org/10.1289/EHP515
  6. Wood TJ, Goulson D. The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. Environ Sci Pollut Res. 2017;24:17285-17325. https://doi.org/10.1007/s11356-017-9240-x
  7. Ramos Y, Portal O, Lysoe E, et al. Diversity and abundance of Beauveria bassiana in soils, stink bugs and plant tissues of common bean from organic and conventional fields. J Invertebr Pathol. 2017;150:114-120. https://doi.org/10.1016/j.jip.2017.10.003
  8. Zimmermann G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci Technol. 2007;17:879-920. https://doi.org/10.1080/09583150701593963
  9. Jackson MA, Dunlap CA, Jaronski ST. Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. BioControl. 2010;55:129-145. https://doi.org/10.1007/s10526-009-9240-y
  10. Vega FE, Goettel MS, Blackwell M, et al. Fungal entomopathogens: new insights on their ecology. Fungal Ecol. 2009;2:149-159. https://doi.org/10.1016/j.funeco.2009.05.001
  11. Kim HG, Park KH, Lee S, et al. Effects of different diets and temperatures on larval growth of the white-spotted flower chafer, Protaetia brevitarsis (Kolbe)(Coleoptera: Scarabaeidae). Int J Ind Entomol. 2015;31:75-78. https://doi.org/10.7852/ijie.2015.31.2.75
  12. Kwon O. Effect of different diets on larval growth of Protaetia brevitarsis seulensis (Kolbe) (Coleoptera: Cetoniidae). Entomol Res. 2009;39:152-154. https://doi.org/10.1111/j.1748-5967.2009.00213.x
  13. Kwak KW, Han MS, Nam SH, et al. Detection of insect pathogen Serratia marcescens in Protaetia brevitarsis seulensis (Kolbe) from Korea. Int J Ind Entomol. 2014;28:25-31. https://doi.org/10.7852/ijie.2014.28.2.25
  14. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673-4680. https://doi.org/10.1093/nar/22.22.4673
  15. Nicholas KB. GeneDoc: analysis and visualization of genetic variation. Embnew News. 1997;4:14.
  16. Saitou N. Property and efficiency of the maximum likelihood method for molecular phylogeny. J Mol Evol. 1988;27:261-273. https://doi.org/10.1007/BF02100082
  17. Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725-2729. https://doi.org/10.1093/molbev/mst197
  18. Song MH, Yu JS, Kim S, et al. Downstream processing of Beauveria bassiana and Metarhizium anisopliae- based fungal biopesticides against Riptortus pedestris: solid culture and delivery of conidia. Biocontrol Sci Technol. 2019;29:514-532. https://doi.org/10.1080/09583157.2019.1566951
  19. Karpouzas DG, Walker A, Froud-Williams RJ, et al. Evidence for the enhanced biodegradation of ethoprophos and carbofuran in soils from Greece and the UK. Pestic Sci. 1999;55:301-311. https://doi.org/10.1002/(SICI)1096-9063(199903)55:3<301::AID-PS897>3.0.CO;2-F
  20. Niemczyk H, Chapman R. Evidence of enhanced degradation of isofenphos in turfgrass thatch and soil. J Econ Entomol. 1987;80:880-882. https://doi.org/10.1093/jee/80.4.880
  21. Lee SJ, Kim S, Kim JC, et al. Entomopathogenic Beauveria bassiana granules to control soil-dwelling stage of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). BioControl. 2017;62:639-648. https://doi.org/10.1007/s10526-017-9818-8
  22. Lovett B, St. Leger RJ. Genetically engineering better fungal biopesticides. Pest Manag Sci. 2018;74:781-789. https://doi.org/10.1002/ps.4734
  23. Chen R-z, Li y. A novel plant volatile attractant scheme to protect corn in China from the whitespotted flower chafer (Coleoptera: Scarabaeidae: Cetoniinae). J Pest Sci. 2011;84:327-335. https://doi.org/10.1007/s10340-011-0353-6
  24. Meyling NV, Thorup-Kristensen K, Eilenberg J. Below-and aboveground abundance and distribution of fungal entomopathogens in experimental conventional and organic cropping systems. Biol Control. 2011;59:180-186. https://doi.org/10.1016/j.biocontrol.2011.07.017
  25. Parker B, Skinner M, Gouli S, et al. Persistence of Beauveria bassiana sensu lato and Metarhizium anisopliae sensu lato in Vermont (USA) forest soil. Biocontrol Sci Technol. 2015;25:768-788. https://doi.org/10.1080/09583157.2015.1016895
  26. Alkhaibari AM, Lord AM, Maffeis T, et al. Highly specific host-pathogen interactions influence Metarhizium brunneum blastospore virulence against Culex quinquefasciatus larvae. Virulence. 2018;9:1449-1467. https://doi.org/10.1080/21505594.2018.1509665
  27. Lee SJ, Lee MR, Kim S, et al. Genomic analysis of the insect-killing fungus Beauveria bassiana JEF-007 as a biopesticide. Sci Rep. 2018;8:12388. https://doi.org/10.1038/s41598-018-30856-1
  28. Ramoutar D, Legrand AI, Alm SR. Field performance of Metarhizium anisopliae against Popillia japonica (Coleoptera: Scarabaeidae) and Listronotus maculicollis (Coleoptera: Curculionidae) larvae in turfgrass. J Entomol Sci. 2010;45:20-26. https://doi.org/10.18474/0749-8004-45.1.20
  29. Milner RJ, Lim RP, Hunter DM. Risks to the aquatic ecosystem from the application of Metarhizium anisopliae for locust control in Australia. Pest Manag Sci. 2002;58:718-723. https://doi.org/10.1002/ps.517
  30. Behle RW, Richmond DS, Jackson MA, et al. Evaluation of Metarhizium brunneum F52 (Hypocreales: Clavicipitaceae) for control of Japanese beetle larvae in turfgrass. J Econ Entomol. 2015;108:1587-1595. https://doi.org/10.1093/jee/tov176
  31. Erler F, Ates AO. Potential of two entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae (Coleoptera: Scarabaeidae), as biological control agents against the June beetle. J Insect Sci. 2015;15:44-44. https://doi.org/10.1093/jisesa/iev029
  32. Park SE, Kim JC, Lee SJ, et al. Solid cultures of thrips-pathogenic fungi Isaria javanica strains for enhanced conidial productivity and thermotolerance. J Asia-Pac Entomol. 2018;21:1102-1109. https://doi.org/10.1016/j.aspen.2018.08.005
  33. Milner RJ, Samson P, Morton R. Persistence of conidia of Metarhizium anisopliae in sugarcane fields: Effect of isolate and formulation on persistence over 3.5 years. Biocontrol Sci Technol. 2003;13:507-516. https://doi.org/10.1080/0958315031000140965
  34. Pilz C, Enkerli J, Wegensteiner R, et al. Establishment and persistence of the entomopathogenic fungus Metarhizium anisopliae in maize fields. J Appl Entomol. 2011;135:393-403. https://doi.org/10.1111/j.1439-0418.2010.01566.x
  35. Samson PR, Milner RJ, McLennan PD. Field trials of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) against Inopus rubriceps (Diptera: Stratiomyidae) in sugarcane. Environ Entomol. 1994;23:749-754. https://doi.org/10.1093/ee/23.3.749

Cited by

  1. Development of a fluid‐bed coating process for soil‐granule‐based formulations of Metarhizium brunneum, Cordyceps fumosorosea or Beauveria bassiana vol.131, pp.1, 2020, https://doi.org/10.1111/jam.14826
  2. Effectiveness of granular formulations of Metarhizium anisopliae and Metarhizium brunneum (Hypocreales: Clavicipitaceae) on off-host larvae of Dermacentor albipictus (Acari: Ixodidae) vol.31, pp.11, 2021, https://doi.org/10.1080/09583157.2021.1926428
  3. Identification and field verification of an aggregation pheromone from the white-spotted flower chafer, Protaetia brevitarsis Lewis (Coleoptera: Scarabaeidae) vol.11, pp.1, 2020, https://doi.org/10.1038/s41598-021-01887-y